Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the conditions under which the function [tex]\( f(x) = mx + b \)[/tex] has an inverse function, we need to consider the properties necessary for a function to have an inverse.
1. Bijectivity: For a function to have an inverse, it must be bijective. Being bijective means the function must be both injective (one-to-one) and surjective (onto).
2. Injectivity: A function is injective if every element of the function's codomain is mapped by at most one element of its domain. For a linear function [tex]\( f(x) = mx + b \)[/tex], injectivity is achieved if and only if the slope [tex]\( m \)[/tex] is not zero. If [tex]\( m \)[/tex] were zero, the function would be a horizontal line, [tex]\( f(x) = b \)[/tex], which maps every [tex]\( x \)[/tex] to the same value [tex]\( b \)[/tex]. Consequently, it would not be injective because different values of [tex]\( x \)[/tex] would map to the same [tex]\( f(x) \)[/tex].
3. Surjectivity: A linear function [tex]\( f(x) = mx + b \)[/tex] is inherently surjective for all real numbers because it can produce any real number output by appropriately choosing [tex]\( x \)[/tex], provided [tex]\( m \neq 0 \)[/tex].
As we've established, the critical factor in determining whether [tex]\( f(x) = mx + b \)[/tex] has an inverse is whether it is injective. This is determined by the slope [tex]\( m \)[/tex].
Therefore, for the function [tex]\( f(x) = mx + b \)[/tex] to have an inverse, it must be true that:
[tex]\[ m \neq 0 \][/tex]
So, the correct statement is:
[tex]\[ m \neq 0 \][/tex]
1. Bijectivity: For a function to have an inverse, it must be bijective. Being bijective means the function must be both injective (one-to-one) and surjective (onto).
2. Injectivity: A function is injective if every element of the function's codomain is mapped by at most one element of its domain. For a linear function [tex]\( f(x) = mx + b \)[/tex], injectivity is achieved if and only if the slope [tex]\( m \)[/tex] is not zero. If [tex]\( m \)[/tex] were zero, the function would be a horizontal line, [tex]\( f(x) = b \)[/tex], which maps every [tex]\( x \)[/tex] to the same value [tex]\( b \)[/tex]. Consequently, it would not be injective because different values of [tex]\( x \)[/tex] would map to the same [tex]\( f(x) \)[/tex].
3. Surjectivity: A linear function [tex]\( f(x) = mx + b \)[/tex] is inherently surjective for all real numbers because it can produce any real number output by appropriately choosing [tex]\( x \)[/tex], provided [tex]\( m \neq 0 \)[/tex].
As we've established, the critical factor in determining whether [tex]\( f(x) = mx + b \)[/tex] has an inverse is whether it is injective. This is determined by the slope [tex]\( m \)[/tex].
Therefore, for the function [tex]\( f(x) = mx + b \)[/tex] to have an inverse, it must be true that:
[tex]\[ m \neq 0 \][/tex]
So, the correct statement is:
[tex]\[ m \neq 0 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.