Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the conditions under which the function [tex]\( f(x) = mx + b \)[/tex] has an inverse function, we need to consider the properties necessary for a function to have an inverse.
1. Bijectivity: For a function to have an inverse, it must be bijective. Being bijective means the function must be both injective (one-to-one) and surjective (onto).
2. Injectivity: A function is injective if every element of the function's codomain is mapped by at most one element of its domain. For a linear function [tex]\( f(x) = mx + b \)[/tex], injectivity is achieved if and only if the slope [tex]\( m \)[/tex] is not zero. If [tex]\( m \)[/tex] were zero, the function would be a horizontal line, [tex]\( f(x) = b \)[/tex], which maps every [tex]\( x \)[/tex] to the same value [tex]\( b \)[/tex]. Consequently, it would not be injective because different values of [tex]\( x \)[/tex] would map to the same [tex]\( f(x) \)[/tex].
3. Surjectivity: A linear function [tex]\( f(x) = mx + b \)[/tex] is inherently surjective for all real numbers because it can produce any real number output by appropriately choosing [tex]\( x \)[/tex], provided [tex]\( m \neq 0 \)[/tex].
As we've established, the critical factor in determining whether [tex]\( f(x) = mx + b \)[/tex] has an inverse is whether it is injective. This is determined by the slope [tex]\( m \)[/tex].
Therefore, for the function [tex]\( f(x) = mx + b \)[/tex] to have an inverse, it must be true that:
[tex]\[ m \neq 0 \][/tex]
So, the correct statement is:
[tex]\[ m \neq 0 \][/tex]
1. Bijectivity: For a function to have an inverse, it must be bijective. Being bijective means the function must be both injective (one-to-one) and surjective (onto).
2. Injectivity: A function is injective if every element of the function's codomain is mapped by at most one element of its domain. For a linear function [tex]\( f(x) = mx + b \)[/tex], injectivity is achieved if and only if the slope [tex]\( m \)[/tex] is not zero. If [tex]\( m \)[/tex] were zero, the function would be a horizontal line, [tex]\( f(x) = b \)[/tex], which maps every [tex]\( x \)[/tex] to the same value [tex]\( b \)[/tex]. Consequently, it would not be injective because different values of [tex]\( x \)[/tex] would map to the same [tex]\( f(x) \)[/tex].
3. Surjectivity: A linear function [tex]\( f(x) = mx + b \)[/tex] is inherently surjective for all real numbers because it can produce any real number output by appropriately choosing [tex]\( x \)[/tex], provided [tex]\( m \neq 0 \)[/tex].
As we've established, the critical factor in determining whether [tex]\( f(x) = mx + b \)[/tex] has an inverse is whether it is injective. This is determined by the slope [tex]\( m \)[/tex].
Therefore, for the function [tex]\( f(x) = mx + b \)[/tex] to have an inverse, it must be true that:
[tex]\[ m \neq 0 \][/tex]
So, the correct statement is:
[tex]\[ m \neq 0 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.