Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

If the function [tex][tex]$f(x) = mx + b$[/tex][/tex] has an inverse function, which statement must be true?

A. [tex][tex]$m \neq 0$[/tex][/tex]
B. [tex][tex]$m = 0$[/tex][/tex]
C. [tex][tex]$b \neq 0$[/tex][/tex]
D. [tex][tex]$b = 0$[/tex][/tex]


Sagot :

To determine the conditions under which the function [tex]\( f(x) = mx + b \)[/tex] has an inverse function, we need to consider the properties necessary for a function to have an inverse.

1. Bijectivity: For a function to have an inverse, it must be bijective. Being bijective means the function must be both injective (one-to-one) and surjective (onto).

2. Injectivity: A function is injective if every element of the function's codomain is mapped by at most one element of its domain. For a linear function [tex]\( f(x) = mx + b \)[/tex], injectivity is achieved if and only if the slope [tex]\( m \)[/tex] is not zero. If [tex]\( m \)[/tex] were zero, the function would be a horizontal line, [tex]\( f(x) = b \)[/tex], which maps every [tex]\( x \)[/tex] to the same value [tex]\( b \)[/tex]. Consequently, it would not be injective because different values of [tex]\( x \)[/tex] would map to the same [tex]\( f(x) \)[/tex].

3. Surjectivity: A linear function [tex]\( f(x) = mx + b \)[/tex] is inherently surjective for all real numbers because it can produce any real number output by appropriately choosing [tex]\( x \)[/tex], provided [tex]\( m \neq 0 \)[/tex].

As we've established, the critical factor in determining whether [tex]\( f(x) = mx + b \)[/tex] has an inverse is whether it is injective. This is determined by the slope [tex]\( m \)[/tex].

Therefore, for the function [tex]\( f(x) = mx + b \)[/tex] to have an inverse, it must be true that:
[tex]\[ m \neq 0 \][/tex]

So, the correct statement is:
[tex]\[ m \neq 0 \][/tex]