Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the conditions under which the function [tex]\( f(x) = mx + b \)[/tex] has an inverse function, we need to consider the properties necessary for a function to have an inverse.
1. Bijectivity: For a function to have an inverse, it must be bijective. Being bijective means the function must be both injective (one-to-one) and surjective (onto).
2. Injectivity: A function is injective if every element of the function's codomain is mapped by at most one element of its domain. For a linear function [tex]\( f(x) = mx + b \)[/tex], injectivity is achieved if and only if the slope [tex]\( m \)[/tex] is not zero. If [tex]\( m \)[/tex] were zero, the function would be a horizontal line, [tex]\( f(x) = b \)[/tex], which maps every [tex]\( x \)[/tex] to the same value [tex]\( b \)[/tex]. Consequently, it would not be injective because different values of [tex]\( x \)[/tex] would map to the same [tex]\( f(x) \)[/tex].
3. Surjectivity: A linear function [tex]\( f(x) = mx + b \)[/tex] is inherently surjective for all real numbers because it can produce any real number output by appropriately choosing [tex]\( x \)[/tex], provided [tex]\( m \neq 0 \)[/tex].
As we've established, the critical factor in determining whether [tex]\( f(x) = mx + b \)[/tex] has an inverse is whether it is injective. This is determined by the slope [tex]\( m \)[/tex].
Therefore, for the function [tex]\( f(x) = mx + b \)[/tex] to have an inverse, it must be true that:
[tex]\[ m \neq 0 \][/tex]
So, the correct statement is:
[tex]\[ m \neq 0 \][/tex]
1. Bijectivity: For a function to have an inverse, it must be bijective. Being bijective means the function must be both injective (one-to-one) and surjective (onto).
2. Injectivity: A function is injective if every element of the function's codomain is mapped by at most one element of its domain. For a linear function [tex]\( f(x) = mx + b \)[/tex], injectivity is achieved if and only if the slope [tex]\( m \)[/tex] is not zero. If [tex]\( m \)[/tex] were zero, the function would be a horizontal line, [tex]\( f(x) = b \)[/tex], which maps every [tex]\( x \)[/tex] to the same value [tex]\( b \)[/tex]. Consequently, it would not be injective because different values of [tex]\( x \)[/tex] would map to the same [tex]\( f(x) \)[/tex].
3. Surjectivity: A linear function [tex]\( f(x) = mx + b \)[/tex] is inherently surjective for all real numbers because it can produce any real number output by appropriately choosing [tex]\( x \)[/tex], provided [tex]\( m \neq 0 \)[/tex].
As we've established, the critical factor in determining whether [tex]\( f(x) = mx + b \)[/tex] has an inverse is whether it is injective. This is determined by the slope [tex]\( m \)[/tex].
Therefore, for the function [tex]\( f(x) = mx + b \)[/tex] to have an inverse, it must be true that:
[tex]\[ m \neq 0 \][/tex]
So, the correct statement is:
[tex]\[ m \neq 0 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.