Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To verify that two functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other, we must check two conditions:
1. [tex]\( f(g(x)) = x \)[/tex]
2. [tex]\( g(f(x)) = x \)[/tex]
This means applying [tex]\( f \)[/tex] to [tex]\( g(x) \)[/tex] and [tex]\( g \)[/tex] to [tex]\( f(x) \)[/tex] should both return the original input [tex]\( x \)[/tex].
Let's evaluate the statements provided:
1. [tex]\( f(g(x)) = x \)[/tex]: This condition alone is necessary but not sufficient on its own to prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses.
2. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = -x \)[/tex]: This is incorrect because both [tex]\( f(g(x)) \)[/tex] and [tex]\( g(f(x)) \)[/tex] must return [tex]\( x \)[/tex], not [tex]\(-x \)[/tex].
3. [tex]\( f(g(x)) = \frac{1}{g(f(x))} \)[/tex]: This expression does not prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses, as it complicates the relationship unnecessarily and does not adhere to the correct definitions.
4. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = x \)[/tex]: This condition correctly states that applying one function after the other (in either order) returns the original input [tex]\( x \)[/tex]. This is the precise definition required to verify that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other.
Therefore, the correct statement that verifies [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
Thus, the correct answer is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
1. [tex]\( f(g(x)) = x \)[/tex]
2. [tex]\( g(f(x)) = x \)[/tex]
This means applying [tex]\( f \)[/tex] to [tex]\( g(x) \)[/tex] and [tex]\( g \)[/tex] to [tex]\( f(x) \)[/tex] should both return the original input [tex]\( x \)[/tex].
Let's evaluate the statements provided:
1. [tex]\( f(g(x)) = x \)[/tex]: This condition alone is necessary but not sufficient on its own to prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses.
2. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = -x \)[/tex]: This is incorrect because both [tex]\( f(g(x)) \)[/tex] and [tex]\( g(f(x)) \)[/tex] must return [tex]\( x \)[/tex], not [tex]\(-x \)[/tex].
3. [tex]\( f(g(x)) = \frac{1}{g(f(x))} \)[/tex]: This expression does not prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses, as it complicates the relationship unnecessarily and does not adhere to the correct definitions.
4. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = x \)[/tex]: This condition correctly states that applying one function after the other (in either order) returns the original input [tex]\( x \)[/tex]. This is the precise definition required to verify that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other.
Therefore, the correct statement that verifies [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
Thus, the correct answer is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.