Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To verify that two functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other, we must check two conditions:
1. [tex]\( f(g(x)) = x \)[/tex]
2. [tex]\( g(f(x)) = x \)[/tex]
This means applying [tex]\( f \)[/tex] to [tex]\( g(x) \)[/tex] and [tex]\( g \)[/tex] to [tex]\( f(x) \)[/tex] should both return the original input [tex]\( x \)[/tex].
Let's evaluate the statements provided:
1. [tex]\( f(g(x)) = x \)[/tex]: This condition alone is necessary but not sufficient on its own to prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses.
2. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = -x \)[/tex]: This is incorrect because both [tex]\( f(g(x)) \)[/tex] and [tex]\( g(f(x)) \)[/tex] must return [tex]\( x \)[/tex], not [tex]\(-x \)[/tex].
3. [tex]\( f(g(x)) = \frac{1}{g(f(x))} \)[/tex]: This expression does not prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses, as it complicates the relationship unnecessarily and does not adhere to the correct definitions.
4. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = x \)[/tex]: This condition correctly states that applying one function after the other (in either order) returns the original input [tex]\( x \)[/tex]. This is the precise definition required to verify that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other.
Therefore, the correct statement that verifies [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
Thus, the correct answer is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
1. [tex]\( f(g(x)) = x \)[/tex]
2. [tex]\( g(f(x)) = x \)[/tex]
This means applying [tex]\( f \)[/tex] to [tex]\( g(x) \)[/tex] and [tex]\( g \)[/tex] to [tex]\( f(x) \)[/tex] should both return the original input [tex]\( x \)[/tex].
Let's evaluate the statements provided:
1. [tex]\( f(g(x)) = x \)[/tex]: This condition alone is necessary but not sufficient on its own to prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses.
2. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = -x \)[/tex]: This is incorrect because both [tex]\( f(g(x)) \)[/tex] and [tex]\( g(f(x)) \)[/tex] must return [tex]\( x \)[/tex], not [tex]\(-x \)[/tex].
3. [tex]\( f(g(x)) = \frac{1}{g(f(x))} \)[/tex]: This expression does not prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses, as it complicates the relationship unnecessarily and does not adhere to the correct definitions.
4. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = x \)[/tex]: This condition correctly states that applying one function after the other (in either order) returns the original input [tex]\( x \)[/tex]. This is the precise definition required to verify that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other.
Therefore, the correct statement that verifies [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
Thus, the correct answer is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.