Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To verify that two functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other, we must check two conditions:
1. [tex]\( f(g(x)) = x \)[/tex]
2. [tex]\( g(f(x)) = x \)[/tex]
This means applying [tex]\( f \)[/tex] to [tex]\( g(x) \)[/tex] and [tex]\( g \)[/tex] to [tex]\( f(x) \)[/tex] should both return the original input [tex]\( x \)[/tex].
Let's evaluate the statements provided:
1. [tex]\( f(g(x)) = x \)[/tex]: This condition alone is necessary but not sufficient on its own to prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses.
2. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = -x \)[/tex]: This is incorrect because both [tex]\( f(g(x)) \)[/tex] and [tex]\( g(f(x)) \)[/tex] must return [tex]\( x \)[/tex], not [tex]\(-x \)[/tex].
3. [tex]\( f(g(x)) = \frac{1}{g(f(x))} \)[/tex]: This expression does not prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses, as it complicates the relationship unnecessarily and does not adhere to the correct definitions.
4. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = x \)[/tex]: This condition correctly states that applying one function after the other (in either order) returns the original input [tex]\( x \)[/tex]. This is the precise definition required to verify that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other.
Therefore, the correct statement that verifies [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
Thus, the correct answer is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
1. [tex]\( f(g(x)) = x \)[/tex]
2. [tex]\( g(f(x)) = x \)[/tex]
This means applying [tex]\( f \)[/tex] to [tex]\( g(x) \)[/tex] and [tex]\( g \)[/tex] to [tex]\( f(x) \)[/tex] should both return the original input [tex]\( x \)[/tex].
Let's evaluate the statements provided:
1. [tex]\( f(g(x)) = x \)[/tex]: This condition alone is necessary but not sufficient on its own to prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses.
2. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = -x \)[/tex]: This is incorrect because both [tex]\( f(g(x)) \)[/tex] and [tex]\( g(f(x)) \)[/tex] must return [tex]\( x \)[/tex], not [tex]\(-x \)[/tex].
3. [tex]\( f(g(x)) = \frac{1}{g(f(x))} \)[/tex]: This expression does not prove that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses, as it complicates the relationship unnecessarily and does not adhere to the correct definitions.
4. [tex]\( f(g(x)) = x \)[/tex] and [tex]\( g(f(x)) = x \)[/tex]: This condition correctly states that applying one function after the other (in either order) returns the original input [tex]\( x \)[/tex]. This is the precise definition required to verify that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other.
Therefore, the correct statement that verifies [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverses of each other is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
Thus, the correct answer is:
[tex]\[ f(g(x)) = x \ \text{and} \ g(f(x)) = x \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.