Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Fill in the missing property for Reason 2.

Statement | Reason
---|---
1) [tex]\(-12x - 3 = -3x + 19\)[/tex] | 1) Given
2) [tex]\(-12x = -3x + 22\)[/tex] | 2) Addition Property of Equality
3) [tex]\(-9x = 22\)[/tex] | 3) Subtraction Property of Equality
4) [tex]\(x = -\frac{22}{9}\)[/tex] | 4) Division Property of Equality

Options:
- Addition Property of Equality
- Subtraction Property of Equality
- Symmetric Property
- Substitution Property

Sagot :

Let's go through the problem step-by-step to fill in the missing properties and complete the solution.

1. Given Equation:
[tex]\[ -12x - 3 = -3x + 19 \][/tex]

2. Apply Addition Property of Equality to move terms involving [tex]\( x \)[/tex] to one side:
[tex]\[ -12x - 3 + 3 = -3x + 19 + 3 \][/tex]
Simplifying, we get:
[tex]\[ -12x = -3x + 22 \][/tex]

3. Apply Subtraction Property of Equality to isolate terms involving [tex]\( x \)[/tex]:
Subtract [tex]\(-3x\)[/tex] from both sides:
[tex]\[ -12x + 3x = -3x + 3x + 22 \][/tex]
Simplifying, we get:
[tex]\[ -9x = 22 \][/tex]

4. Apply Division Property of Equality to solve for [tex]\( x \)[/tex]:
Divide both sides by [tex]\(-9\)[/tex]:
[tex]\[ x = \frac{22}{-9} \][/tex]
Simplifying, we get:
[tex]\[ x = -\frac{22}{9} \][/tex]

Now, filling in the reasons:

1. Statement:
[tex]\[ -12x - 3 = -3x + 19 \][/tex]
Reason: Given

2. Statement:
[tex]\[ -12x = -3x + 22 \][/tex]
Reason: Addition Property of Equality

3. Statement:
[tex]\[ -9x = 22 \][/tex]
Reason: Subtraction Property of Equality

4. Statement:
[tex]\[ x = -\frac{22}{9} \][/tex]
Reason: Division Property of Equality

Thus, the completed solution with reasons is:

1. Statement: [tex]\(-12x - 3 = -3x + 19\)[/tex]
Reason: Given

2. Statement: [tex]\(-12x = -3x + 22\)[/tex]
Reason: Addition Property of Equality

3. Statement: [tex]\(-9x = 22\)[/tex]
Reason: Subtraction Property of Equality

4. Statement: [tex]\( x = -\frac{22}{9} \)[/tex]
Reason: Division Property of Equality
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.