At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's go through the problem step-by-step to fill in the missing properties and complete the solution.
1. Given Equation:
[tex]\[ -12x - 3 = -3x + 19 \][/tex]
2. Apply Addition Property of Equality to move terms involving [tex]\( x \)[/tex] to one side:
[tex]\[ -12x - 3 + 3 = -3x + 19 + 3 \][/tex]
Simplifying, we get:
[tex]\[ -12x = -3x + 22 \][/tex]
3. Apply Subtraction Property of Equality to isolate terms involving [tex]\( x \)[/tex]:
Subtract [tex]\(-3x\)[/tex] from both sides:
[tex]\[ -12x + 3x = -3x + 3x + 22 \][/tex]
Simplifying, we get:
[tex]\[ -9x = 22 \][/tex]
4. Apply Division Property of Equality to solve for [tex]\( x \)[/tex]:
Divide both sides by [tex]\(-9\)[/tex]:
[tex]\[ x = \frac{22}{-9} \][/tex]
Simplifying, we get:
[tex]\[ x = -\frac{22}{9} \][/tex]
Now, filling in the reasons:
1. Statement:
[tex]\[ -12x - 3 = -3x + 19 \][/tex]
Reason: Given
2. Statement:
[tex]\[ -12x = -3x + 22 \][/tex]
Reason: Addition Property of Equality
3. Statement:
[tex]\[ -9x = 22 \][/tex]
Reason: Subtraction Property of Equality
4. Statement:
[tex]\[ x = -\frac{22}{9} \][/tex]
Reason: Division Property of Equality
Thus, the completed solution with reasons is:
1. Statement: [tex]\(-12x - 3 = -3x + 19\)[/tex]
Reason: Given
2. Statement: [tex]\(-12x = -3x + 22\)[/tex]
Reason: Addition Property of Equality
3. Statement: [tex]\(-9x = 22\)[/tex]
Reason: Subtraction Property of Equality
4. Statement: [tex]\( x = -\frac{22}{9} \)[/tex]
Reason: Division Property of Equality
1. Given Equation:
[tex]\[ -12x - 3 = -3x + 19 \][/tex]
2. Apply Addition Property of Equality to move terms involving [tex]\( x \)[/tex] to one side:
[tex]\[ -12x - 3 + 3 = -3x + 19 + 3 \][/tex]
Simplifying, we get:
[tex]\[ -12x = -3x + 22 \][/tex]
3. Apply Subtraction Property of Equality to isolate terms involving [tex]\( x \)[/tex]:
Subtract [tex]\(-3x\)[/tex] from both sides:
[tex]\[ -12x + 3x = -3x + 3x + 22 \][/tex]
Simplifying, we get:
[tex]\[ -9x = 22 \][/tex]
4. Apply Division Property of Equality to solve for [tex]\( x \)[/tex]:
Divide both sides by [tex]\(-9\)[/tex]:
[tex]\[ x = \frac{22}{-9} \][/tex]
Simplifying, we get:
[tex]\[ x = -\frac{22}{9} \][/tex]
Now, filling in the reasons:
1. Statement:
[tex]\[ -12x - 3 = -3x + 19 \][/tex]
Reason: Given
2. Statement:
[tex]\[ -12x = -3x + 22 \][/tex]
Reason: Addition Property of Equality
3. Statement:
[tex]\[ -9x = 22 \][/tex]
Reason: Subtraction Property of Equality
4. Statement:
[tex]\[ x = -\frac{22}{9} \][/tex]
Reason: Division Property of Equality
Thus, the completed solution with reasons is:
1. Statement: [tex]\(-12x - 3 = -3x + 19\)[/tex]
Reason: Given
2. Statement: [tex]\(-12x = -3x + 22\)[/tex]
Reason: Addition Property of Equality
3. Statement: [tex]\(-9x = 22\)[/tex]
Reason: Subtraction Property of Equality
4. Statement: [tex]\( x = -\frac{22}{9} \)[/tex]
Reason: Division Property of Equality
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.