Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To factor the expression [tex]\( r^{27} - s^{30} \)[/tex], one can use the properties of polynomials and factorization.
Let's start by observing that both terms [tex]\( r^{27} \)[/tex] and [tex]\( s^{30} \)[/tex] have powers that are multiples of 3. We can then factor this as a difference of cubes. Specifically, we note that:
[tex]\[ r^{27} = (r^9)^3 \][/tex]
[tex]\[ s^{30} = (s^{10})^3 \][/tex]
By the difference of cubes formula, [tex]\(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\)[/tex], we identify [tex]\( a = r^9 \)[/tex] and [tex]\( b = s^{10} \)[/tex].
Applying the formula:
[tex]\[ r^{27} - s^{30} = (r^9)^3 - (s^{10})^3 \][/tex]
[tex]\[ = (r^9 - s^{10})((r^9)^2 + r^9(s^{10}) + (s^{10})^2) \][/tex]
Simplifying inside the second bracket:
[tex]\[ (r^9)^2 = r^{18} \][/tex]
[tex]\[ r^9 \cdot s^{10} = r^9 s^{10} \][/tex]
[tex]\[ (s^{10})^2 = s^{20} \][/tex]
Hence, we get:
[tex]\[ r^{27} - s^{30} = (r^9 - s^{10})(r^{18} + r^9 s^{10} + s^{20}) \][/tex]
Thus, the factored form of [tex]\( r^{27} - s^{30} \)[/tex] is:
[tex]\[ (r^9 - s^{10})(r^{18} + r^9 s^{10} + s^{20}) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\left(r^9 - s^{10}\right)\left(r^{18} + r^9 s^{10} + s^{20}\right)} \][/tex]
Let's start by observing that both terms [tex]\( r^{27} \)[/tex] and [tex]\( s^{30} \)[/tex] have powers that are multiples of 3. We can then factor this as a difference of cubes. Specifically, we note that:
[tex]\[ r^{27} = (r^9)^3 \][/tex]
[tex]\[ s^{30} = (s^{10})^3 \][/tex]
By the difference of cubes formula, [tex]\(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\)[/tex], we identify [tex]\( a = r^9 \)[/tex] and [tex]\( b = s^{10} \)[/tex].
Applying the formula:
[tex]\[ r^{27} - s^{30} = (r^9)^3 - (s^{10})^3 \][/tex]
[tex]\[ = (r^9 - s^{10})((r^9)^2 + r^9(s^{10}) + (s^{10})^2) \][/tex]
Simplifying inside the second bracket:
[tex]\[ (r^9)^2 = r^{18} \][/tex]
[tex]\[ r^9 \cdot s^{10} = r^9 s^{10} \][/tex]
[tex]\[ (s^{10})^2 = s^{20} \][/tex]
Hence, we get:
[tex]\[ r^{27} - s^{30} = (r^9 - s^{10})(r^{18} + r^9 s^{10} + s^{20}) \][/tex]
Thus, the factored form of [tex]\( r^{27} - s^{30} \)[/tex] is:
[tex]\[ (r^9 - s^{10})(r^{18} + r^9 s^{10} + s^{20}) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\left(r^9 - s^{10}\right)\left(r^{18} + r^9 s^{10} + s^{20}\right)} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.