Answered

Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

[tex]$f(x)=x^5$[/tex] has which type of symmetry?

A. no symmetry
B. even symmetry
C. odd symmetry
D. both even and odd symmetry


Sagot :

To determine the type of symmetry for the function [tex]\( f(x) = x^5 \)[/tex], we need to check for either even or odd symmetry.

1. Even Symmetry: A function [tex]\( f(x) \)[/tex] is even if [tex]\( f(-x) = f(x) \)[/tex] for all [tex]\( x \)[/tex] in the domain.

2. Odd Symmetry: A function [tex]\( f(x) \)[/tex] is odd if [tex]\( f(-x) = -f(x) \)[/tex] for all [tex]\( x \)[/tex] in the domain.

Let's check for odd symmetry:

- Calculate [tex]\( f(x) \)[/tex] for [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 1^5 = 1 \][/tex]

- Calculate [tex]\( f(-x) \)[/tex] for [tex]\( x = 1 \)[/tex]:
[tex]\[ f(-1) = (-1)^5 = -1 \][/tex]

Now, compare [tex]\( f(-x) \)[/tex] and [tex]\(-f(x) \)[/tex]:

- [tex]\(-f(x)\)[/tex] for [tex]\( x = 1 \)[/tex]:
[tex]\[ -f(1) = -1 \][/tex]

Since [tex]\( f(-1) = -1 \)[/tex] is equal to [tex]\(-f(1) = -1 \)[/tex]:

[tex]\[ f(-x) = -f(x) \][/tex]

This confirms that the function [tex]\( f(x) = x^5 \)[/tex] is odd.

Therefore, [tex]\( f(x) \)[/tex] has odd symmetry, which is also known as origin or rotational symmetry.

The correct answer is:
[tex]\[ \text{odd} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.