Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Alright, let's break down the problem step-by-step.
First, we are given three conditions:
1. [tex]\( ac = 1 \)[/tex]
2. [tex]\( \frac{b+c}{d} \)[/tex] is undefined
3. [tex]\( abc = d \)[/tex]
Let's analyze each condition:
### Condition 1: [tex]\( ac = 1 \)[/tex]
This implies that the product of [tex]\(a\)[/tex] and [tex]\(c\)[/tex] is equal to 1. This means neither [tex]\(a\)[/tex] nor [tex]\(c\)[/tex] can be zero, because any number multiplied by zero equals zero, not one.
### Condition 2: [tex]\( \frac{b+c}{d} \)[/tex] is undefined
The expression is undefined when division by zero occurs. Hence, for this expression to be undefined, [tex]\(d\)[/tex] must be zero.
### Condition 3: [tex]\( abc = d \)[/tex]
We know from condition 2 that [tex]\(d = 0\)[/tex], so substituting [tex]\(d\)[/tex] in condition 3 gives us:
[tex]\[ abc = 0 \][/tex]
Since neither [tex]\(a\)[/tex] nor [tex]\(c\)[/tex] can be zero (from condition 1), the only variable that can be zero to satisfy this equation is [tex]\(b\)[/tex].
Thus, the conclusion is that [tex]\(b\)[/tex] must be zero.
Therefore, among the given options, the correct statement must be:
D. [tex]\( b = 0 \)[/tex]
First, we are given three conditions:
1. [tex]\( ac = 1 \)[/tex]
2. [tex]\( \frac{b+c}{d} \)[/tex] is undefined
3. [tex]\( abc = d \)[/tex]
Let's analyze each condition:
### Condition 1: [tex]\( ac = 1 \)[/tex]
This implies that the product of [tex]\(a\)[/tex] and [tex]\(c\)[/tex] is equal to 1. This means neither [tex]\(a\)[/tex] nor [tex]\(c\)[/tex] can be zero, because any number multiplied by zero equals zero, not one.
### Condition 2: [tex]\( \frac{b+c}{d} \)[/tex] is undefined
The expression is undefined when division by zero occurs. Hence, for this expression to be undefined, [tex]\(d\)[/tex] must be zero.
### Condition 3: [tex]\( abc = d \)[/tex]
We know from condition 2 that [tex]\(d = 0\)[/tex], so substituting [tex]\(d\)[/tex] in condition 3 gives us:
[tex]\[ abc = 0 \][/tex]
Since neither [tex]\(a\)[/tex] nor [tex]\(c\)[/tex] can be zero (from condition 1), the only variable that can be zero to satisfy this equation is [tex]\(b\)[/tex].
Thus, the conclusion is that [tex]\(b\)[/tex] must be zero.
Therefore, among the given options, the correct statement must be:
D. [tex]\( b = 0 \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.