Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the frequency of the light wave, we can use the fundamental relationship between speed, frequency, and wavelength, which is given by the equation:
[tex]\[ \text{Speed} = \text{Frequency} \times \text{Wavelength} \][/tex]
Here, we are given the speed of light and the wavelength:
- Speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] meters/second
- Wavelength, [tex]\( \lambda = 7.0 \times 10^{-7} \)[/tex] meters
We need to solve for the frequency [tex]\( f \)[/tex]. Rearranging the equation to solve for frequency, we get:
[tex]\[ f = \frac{\text{Speed}}{\text{Wavelength}} \][/tex]
Substituting the given values into the equation:
[tex]\[ f = \frac{3.0 \times 10^8 \text{ m/s}}{7.0 \times 10^{-7} \text{ m}} \][/tex]
When we divide these values, we get:
[tex]\[ f = 4.2857142857142856 \times 10^{14} \text{ Hz} \][/tex]
To select the correct answer from our options, let's compare our result with the given choices:
A. [tex]\( 2.5 \times 10^{-14} \)[/tex] Hz
B. [tex]\( 4.3 \times 10^{14} \)[/tex] Hz
C. [tex]\( 1.7 \times 10^{-14} \)[/tex] Hz
D. [tex]\( 5.1 \times 10^{-14} \)[/tex] Hz
The result [tex]\( 4.2857142857142856 \times 10^{14} Hz \)[/tex] is very close to [tex]\( 4.3 \times 10^{14} Hz \)[/tex], which corresponds to option B.
Therefore, the correct answer is:
B. [tex]\( 4.3 \times 10^{14} \)[/tex] hertz
[tex]\[ \text{Speed} = \text{Frequency} \times \text{Wavelength} \][/tex]
Here, we are given the speed of light and the wavelength:
- Speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] meters/second
- Wavelength, [tex]\( \lambda = 7.0 \times 10^{-7} \)[/tex] meters
We need to solve for the frequency [tex]\( f \)[/tex]. Rearranging the equation to solve for frequency, we get:
[tex]\[ f = \frac{\text{Speed}}{\text{Wavelength}} \][/tex]
Substituting the given values into the equation:
[tex]\[ f = \frac{3.0 \times 10^8 \text{ m/s}}{7.0 \times 10^{-7} \text{ m}} \][/tex]
When we divide these values, we get:
[tex]\[ f = 4.2857142857142856 \times 10^{14} \text{ Hz} \][/tex]
To select the correct answer from our options, let's compare our result with the given choices:
A. [tex]\( 2.5 \times 10^{-14} \)[/tex] Hz
B. [tex]\( 4.3 \times 10^{14} \)[/tex] Hz
C. [tex]\( 1.7 \times 10^{-14} \)[/tex] Hz
D. [tex]\( 5.1 \times 10^{-14} \)[/tex] Hz
The result [tex]\( 4.2857142857142856 \times 10^{14} Hz \)[/tex] is very close to [tex]\( 4.3 \times 10^{14} Hz \)[/tex], which corresponds to option B.
Therefore, the correct answer is:
B. [tex]\( 4.3 \times 10^{14} \)[/tex] hertz
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.