Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the frequency of the light wave, we can use the fundamental relationship between speed, frequency, and wavelength, which is given by the equation:
[tex]\[ \text{Speed} = \text{Frequency} \times \text{Wavelength} \][/tex]
Here, we are given the speed of light and the wavelength:
- Speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] meters/second
- Wavelength, [tex]\( \lambda = 7.0 \times 10^{-7} \)[/tex] meters
We need to solve for the frequency [tex]\( f \)[/tex]. Rearranging the equation to solve for frequency, we get:
[tex]\[ f = \frac{\text{Speed}}{\text{Wavelength}} \][/tex]
Substituting the given values into the equation:
[tex]\[ f = \frac{3.0 \times 10^8 \text{ m/s}}{7.0 \times 10^{-7} \text{ m}} \][/tex]
When we divide these values, we get:
[tex]\[ f = 4.2857142857142856 \times 10^{14} \text{ Hz} \][/tex]
To select the correct answer from our options, let's compare our result with the given choices:
A. [tex]\( 2.5 \times 10^{-14} \)[/tex] Hz
B. [tex]\( 4.3 \times 10^{14} \)[/tex] Hz
C. [tex]\( 1.7 \times 10^{-14} \)[/tex] Hz
D. [tex]\( 5.1 \times 10^{-14} \)[/tex] Hz
The result [tex]\( 4.2857142857142856 \times 10^{14} Hz \)[/tex] is very close to [tex]\( 4.3 \times 10^{14} Hz \)[/tex], which corresponds to option B.
Therefore, the correct answer is:
B. [tex]\( 4.3 \times 10^{14} \)[/tex] hertz
[tex]\[ \text{Speed} = \text{Frequency} \times \text{Wavelength} \][/tex]
Here, we are given the speed of light and the wavelength:
- Speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] meters/second
- Wavelength, [tex]\( \lambda = 7.0 \times 10^{-7} \)[/tex] meters
We need to solve for the frequency [tex]\( f \)[/tex]. Rearranging the equation to solve for frequency, we get:
[tex]\[ f = \frac{\text{Speed}}{\text{Wavelength}} \][/tex]
Substituting the given values into the equation:
[tex]\[ f = \frac{3.0 \times 10^8 \text{ m/s}}{7.0 \times 10^{-7} \text{ m}} \][/tex]
When we divide these values, we get:
[tex]\[ f = 4.2857142857142856 \times 10^{14} \text{ Hz} \][/tex]
To select the correct answer from our options, let's compare our result with the given choices:
A. [tex]\( 2.5 \times 10^{-14} \)[/tex] Hz
B. [tex]\( 4.3 \times 10^{14} \)[/tex] Hz
C. [tex]\( 1.7 \times 10^{-14} \)[/tex] Hz
D. [tex]\( 5.1 \times 10^{-14} \)[/tex] Hz
The result [tex]\( 4.2857142857142856 \times 10^{14} Hz \)[/tex] is very close to [tex]\( 4.3 \times 10^{14} Hz \)[/tex], which corresponds to option B.
Therefore, the correct answer is:
B. [tex]\( 4.3 \times 10^{14} \)[/tex] hertz
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.