At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Alright, let's solve these equations step by step.
### Equation 1: [tex]\(7x + 9 = 3 + 9x\)[/tex]
1. Isolate the variable terms on one side: Start by moving all terms involving [tex]\(x\)[/tex] to one side of the equation. We can subtract [tex]\(9x\)[/tex] from both sides:
[tex]\[ 7x + 9 - 9x = 3 \][/tex]
2. Simplify the equation: Combine like terms:
[tex]\[ 7x - 9x + 9 = 3 \implies -2x + 9 = 3 \][/tex]
3. Isolate [tex]\(x\)[/tex]: Move the constant term on the left side to the right side by subtracting 9 from both sides:
[tex]\[ -2x = 3 - 9 \implies -2x = -6 \][/tex]
4. Solve for [tex]\(x\)[/tex]: Divide both sides by [tex]\(-2\)[/tex]:
[tex]\[ x = \frac{-6}{-2} \implies x = 3 \][/tex]
So, the solution to the first equation is [tex]\(x = 3\)[/tex].
### Equation 2: [tex]\(x + 1 = 2x - 7\)[/tex]
1. Isolate the variable terms on one side: We start by moving all terms involving [tex]\(x\)[/tex] to one side of the equation. We can subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ x + 1 - x = 2x - 7 - x \][/tex]
2. Simplify the equation: Combine like terms:
[tex]\[ 1 = x - 7 \][/tex]
3. Isolate [tex]\(x\)[/tex]: Move the constant term on the right side to the left side by adding 7 to both sides:
[tex]\[ 1 + 7 = x \implies x = 8 \][/tex]
So, the solution to the second equation is [tex]\(x = 8\)[/tex].
### Summary of Solutions
- For the equation [tex]\(7x + 9 = 3 + 9x\)[/tex], the solution is [tex]\(x = 3\)[/tex].
- For the equation [tex]\(x + 1 = 2x - 7\)[/tex], the solution is [tex]\(x = 8\)[/tex].
Thus, the solutions to the given equations are:
[tex]\[ x = 3 \quad \text{and} \quad x = 8 \][/tex]
### Equation 1: [tex]\(7x + 9 = 3 + 9x\)[/tex]
1. Isolate the variable terms on one side: Start by moving all terms involving [tex]\(x\)[/tex] to one side of the equation. We can subtract [tex]\(9x\)[/tex] from both sides:
[tex]\[ 7x + 9 - 9x = 3 \][/tex]
2. Simplify the equation: Combine like terms:
[tex]\[ 7x - 9x + 9 = 3 \implies -2x + 9 = 3 \][/tex]
3. Isolate [tex]\(x\)[/tex]: Move the constant term on the left side to the right side by subtracting 9 from both sides:
[tex]\[ -2x = 3 - 9 \implies -2x = -6 \][/tex]
4. Solve for [tex]\(x\)[/tex]: Divide both sides by [tex]\(-2\)[/tex]:
[tex]\[ x = \frac{-6}{-2} \implies x = 3 \][/tex]
So, the solution to the first equation is [tex]\(x = 3\)[/tex].
### Equation 2: [tex]\(x + 1 = 2x - 7\)[/tex]
1. Isolate the variable terms on one side: We start by moving all terms involving [tex]\(x\)[/tex] to one side of the equation. We can subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ x + 1 - x = 2x - 7 - x \][/tex]
2. Simplify the equation: Combine like terms:
[tex]\[ 1 = x - 7 \][/tex]
3. Isolate [tex]\(x\)[/tex]: Move the constant term on the right side to the left side by adding 7 to both sides:
[tex]\[ 1 + 7 = x \implies x = 8 \][/tex]
So, the solution to the second equation is [tex]\(x = 8\)[/tex].
### Summary of Solutions
- For the equation [tex]\(7x + 9 = 3 + 9x\)[/tex], the solution is [tex]\(x = 3\)[/tex].
- For the equation [tex]\(x + 1 = 2x - 7\)[/tex], the solution is [tex]\(x = 8\)[/tex].
Thus, the solutions to the given equations are:
[tex]\[ x = 3 \quad \text{and} \quad x = 8 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.