Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which of the given expressions are binomials, we need to recall the definition of a binomial. A binomial is a polynomial that consists of exactly two terms. Each term can be a monomial (a single term like [tex]\( ax^n \)[/tex]).
Let's examine each expression one by one:
A. [tex]\( x^2 + 3 \)[/tex]
This expression has two terms: [tex]\( x^2 \)[/tex] and [tex]\( 3 \)[/tex]. Since there are exactly two terms, this is a binomial.
B. [tex]\( x^{11} \)[/tex]
This expression consists of just one term: [tex]\( x^{11} \)[/tex]. Since a binomial must have exactly two terms, this is not a binomial.
C. [tex]\( x^4 + x^2 + 1 \)[/tex]
This expression has three terms: [tex]\( x^4 \)[/tex], [tex]\( x^2 \)[/tex], and [tex]\( 1 \)[/tex]. Since it does not have exactly two terms, this is not a binomial.
D. [tex]\( 8x \)[/tex]
This expression has only one term: [tex]\( 8x \)[/tex]. Since a binomial must have exactly two terms, this is not a binomial.
E. [tex]\( 6x^2 + \frac{1}{2} y^3 \)[/tex]
This expression has two terms: [tex]\( 6x^2 \)[/tex] and [tex]\( \frac{1}{2} y^3 \)[/tex]. Since there are exactly two terms, this is a binomial.
F. [tex]\( \frac{5}{7} y^3 + 5 y^2 + y \)[/tex]
This expression has three terms: [tex]\( \frac{5}{7} y^3 \)[/tex], [tex]\( 5 y^2 \)[/tex], and [tex]\( y \)[/tex]. Since it does not have exactly two terms, this is not a binomial.
To summarize, the binomials among the given expressions are:
- [tex]\( x^2 + 3 \)[/tex] (Expression A)
- [tex]\( 6x^2 + \frac{1}{2} y^3 \)[/tex] (Expression E)
So, the expressions that are binomials are A and E.
Let's examine each expression one by one:
A. [tex]\( x^2 + 3 \)[/tex]
This expression has two terms: [tex]\( x^2 \)[/tex] and [tex]\( 3 \)[/tex]. Since there are exactly two terms, this is a binomial.
B. [tex]\( x^{11} \)[/tex]
This expression consists of just one term: [tex]\( x^{11} \)[/tex]. Since a binomial must have exactly two terms, this is not a binomial.
C. [tex]\( x^4 + x^2 + 1 \)[/tex]
This expression has three terms: [tex]\( x^4 \)[/tex], [tex]\( x^2 \)[/tex], and [tex]\( 1 \)[/tex]. Since it does not have exactly two terms, this is not a binomial.
D. [tex]\( 8x \)[/tex]
This expression has only one term: [tex]\( 8x \)[/tex]. Since a binomial must have exactly two terms, this is not a binomial.
E. [tex]\( 6x^2 + \frac{1}{2} y^3 \)[/tex]
This expression has two terms: [tex]\( 6x^2 \)[/tex] and [tex]\( \frac{1}{2} y^3 \)[/tex]. Since there are exactly two terms, this is a binomial.
F. [tex]\( \frac{5}{7} y^3 + 5 y^2 + y \)[/tex]
This expression has three terms: [tex]\( \frac{5}{7} y^3 \)[/tex], [tex]\( 5 y^2 \)[/tex], and [tex]\( y \)[/tex]. Since it does not have exactly two terms, this is not a binomial.
To summarize, the binomials among the given expressions are:
- [tex]\( x^2 + 3 \)[/tex] (Expression A)
- [tex]\( 6x^2 + \frac{1}{2} y^3 \)[/tex] (Expression E)
So, the expressions that are binomials are A and E.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.