Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's solve the problem step-by-step.
### Understanding the problem
A standard die has 6 faces with the numbers 1, 2, 3, 4, 5, and 6. When a die is thrown, each face has an equal probability of landing face up. Therefore, there is a total of 6 possible outcomes.
### (i) Probability of getting a 2
A die has one face showing the number 2. Therefore, there is only one favorable outcome (i.e., getting a 2) out of the total 6 possible outcomes.
[tex]\[ \text{Probability of getting a 2} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{1}{6} \][/tex]
The result in decimal form is approximately:
[tex]\[ \text{Probability of getting a 2} ≈ 0.1667 \][/tex]
### (ii) Probability of getting a number less than 3
A number less than 3 on a die can be either 1 or 2. There are 2 favorable outcomes (i.e., getting a 1 or a 2).
[tex]\[ \text{Probability of getting a number less than 3} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{2}{6} = \frac{1}{3} \][/tex]
The result in decimal form is approximately:
[tex]\[ \text{Probability of getting a number less than 3} ≈ 0.3333 \][/tex]
### (iii) Probability of getting a composite number
Among the numbers on a die (1, 2, 3, 4, 5, 6), the composite numbers are 4 and 6. Composite numbers are numbers that have more than two distinct divisors. Therefore, there are 2 favorable outcomes (i.e., getting a 4 or a 6).
[tex]\[ \text{Probability of getting a composite number} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{2}{6} = \frac{1}{3} \][/tex]
The result in decimal form is approximately:
[tex]\[ \text{Probability of getting a composite number} ≈ 0.3333 \][/tex]
### (iv) Probability of getting a number not less than 4
A number not less than 4 on a die can be 4, 5, or 6. There are 3 favorable outcomes (i.e., getting a 4, 5, or 6).
[tex]\[ \text{Probability of getting a number not less than 4} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{3}{6} = \frac{1}{2} \][/tex]
The result in decimal form is:
[tex]\[ \text{Probability of getting a number not less than 4} = 0.5 \][/tex]
### Summary
(i) The probability of getting a 2 is approximately 0.1667. \
(ii) The probability of getting a number less than 3 is approximately 0.3333. \
(iii) The probability of getting a composite number is approximately 0.3333. \
(iv) The probability of getting a number not less than 4 is 0.5.
### Understanding the problem
A standard die has 6 faces with the numbers 1, 2, 3, 4, 5, and 6. When a die is thrown, each face has an equal probability of landing face up. Therefore, there is a total of 6 possible outcomes.
### (i) Probability of getting a 2
A die has one face showing the number 2. Therefore, there is only one favorable outcome (i.e., getting a 2) out of the total 6 possible outcomes.
[tex]\[ \text{Probability of getting a 2} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{1}{6} \][/tex]
The result in decimal form is approximately:
[tex]\[ \text{Probability of getting a 2} ≈ 0.1667 \][/tex]
### (ii) Probability of getting a number less than 3
A number less than 3 on a die can be either 1 or 2. There are 2 favorable outcomes (i.e., getting a 1 or a 2).
[tex]\[ \text{Probability of getting a number less than 3} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{2}{6} = \frac{1}{3} \][/tex]
The result in decimal form is approximately:
[tex]\[ \text{Probability of getting a number less than 3} ≈ 0.3333 \][/tex]
### (iii) Probability of getting a composite number
Among the numbers on a die (1, 2, 3, 4, 5, 6), the composite numbers are 4 and 6. Composite numbers are numbers that have more than two distinct divisors. Therefore, there are 2 favorable outcomes (i.e., getting a 4 or a 6).
[tex]\[ \text{Probability of getting a composite number} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{2}{6} = \frac{1}{3} \][/tex]
The result in decimal form is approximately:
[tex]\[ \text{Probability of getting a composite number} ≈ 0.3333 \][/tex]
### (iv) Probability of getting a number not less than 4
A number not less than 4 on a die can be 4, 5, or 6. There are 3 favorable outcomes (i.e., getting a 4, 5, or 6).
[tex]\[ \text{Probability of getting a number not less than 4} = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{3}{6} = \frac{1}{2} \][/tex]
The result in decimal form is:
[tex]\[ \text{Probability of getting a number not less than 4} = 0.5 \][/tex]
### Summary
(i) The probability of getting a 2 is approximately 0.1667. \
(ii) The probability of getting a number less than 3 is approximately 0.3333. \
(iii) The probability of getting a composite number is approximately 0.3333. \
(iv) The probability of getting a number not less than 4 is 0.5.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.