Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's solve the given expression step-by-step:
We start with the given expression:
[tex]\[ \sqrt[5]{10^3} \cdot \sqrt[5]{10^4} \][/tex]
First, we recognize that this expression involves roots and can be rewritten using exponents. Specifically, the fifth root of a number can be expressed as raising that number to the power of [tex]\( \frac{1}{5} \)[/tex]. Thus:
[tex]\[ \sqrt[5]{10^3} = (10^3)^{\frac{1}{5}} = 10^{3 \cdot \frac{1}{5}} = 10^{\frac{3}{5}} \][/tex]
[tex]\[ \sqrt[5]{10^4} = (10^4)^{\frac{1}{5}} = 10^{4 \cdot \frac{1}{5}} = 10^{\frac{4}{5}} \][/tex]
Now, we multiply these two expressions together:
[tex]\[ 10^{\frac{3}{5}} \cdot 10^{\frac{4}{5}} \][/tex]
Using the property of exponents that states [tex]\( a^m \cdot a^n = a^{m+n} \)[/tex]:
[tex]\[ 10^{\frac{3}{5}} \cdot 10^{\frac{4}{5}} = 10^{\frac{3}{5} + \frac{4}{5}} = 10^{\frac{3+4}{5}} = 10^{\frac{7}{5}} \][/tex]
Thus, the expression [tex]\( \sqrt[5]{10^3} \cdot \sqrt[5]{10^4} \)[/tex] can be simplified to:
[tex]\[ 10^{\frac{7}{5}} \][/tex]
Now, we can express [tex]\( 10^{\frac{7}{5}} \)[/tex] in a more straightforward decimal form if needed. The exponent [tex]\( \frac{7}{5} \)[/tex] is equivalent to 1.4. So, we have:
[tex]\[ 10^{1.4} \approx 25.118864315095795 \][/tex]
So, the given expression [tex]\( \sqrt[5]{10^3} \cdot \sqrt[5]{10^4} \)[/tex] is equivalent to:
[tex]\[ 10^{\frac{7}{5}} \text{ or approximately } 25.118864315095795 \][/tex]
We start with the given expression:
[tex]\[ \sqrt[5]{10^3} \cdot \sqrt[5]{10^4} \][/tex]
First, we recognize that this expression involves roots and can be rewritten using exponents. Specifically, the fifth root of a number can be expressed as raising that number to the power of [tex]\( \frac{1}{5} \)[/tex]. Thus:
[tex]\[ \sqrt[5]{10^3} = (10^3)^{\frac{1}{5}} = 10^{3 \cdot \frac{1}{5}} = 10^{\frac{3}{5}} \][/tex]
[tex]\[ \sqrt[5]{10^4} = (10^4)^{\frac{1}{5}} = 10^{4 \cdot \frac{1}{5}} = 10^{\frac{4}{5}} \][/tex]
Now, we multiply these two expressions together:
[tex]\[ 10^{\frac{3}{5}} \cdot 10^{\frac{4}{5}} \][/tex]
Using the property of exponents that states [tex]\( a^m \cdot a^n = a^{m+n} \)[/tex]:
[tex]\[ 10^{\frac{3}{5}} \cdot 10^{\frac{4}{5}} = 10^{\frac{3}{5} + \frac{4}{5}} = 10^{\frac{3+4}{5}} = 10^{\frac{7}{5}} \][/tex]
Thus, the expression [tex]\( \sqrt[5]{10^3} \cdot \sqrt[5]{10^4} \)[/tex] can be simplified to:
[tex]\[ 10^{\frac{7}{5}} \][/tex]
Now, we can express [tex]\( 10^{\frac{7}{5}} \)[/tex] in a more straightforward decimal form if needed. The exponent [tex]\( \frac{7}{5} \)[/tex] is equivalent to 1.4. So, we have:
[tex]\[ 10^{1.4} \approx 25.118864315095795 \][/tex]
So, the given expression [tex]\( \sqrt[5]{10^3} \cdot \sqrt[5]{10^4} \)[/tex] is equivalent to:
[tex]\[ 10^{\frac{7}{5}} \text{ or approximately } 25.118864315095795 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.