Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the maximum volume of ammonia gas ([tex]\( NH_3 \)[/tex]) that can be formed from heating ammonium chloride ([tex]\( NH_4Cl \)[/tex]) with excess calcium hydroxide, we need to follow these steps:
1. Calculate the molar mass of ammonium chloride ([tex]\( NH_4Cl \)[/tex]):
Ammonium chloride is composed of:
- Nitrogen (N): 1 atom with atomic mass of 14.0
- Hydrogen (H): 4 atoms with atomic mass of 1.00 each
- Chlorine (Cl): 1 atom with atomic mass of 35.45
The molar mass of [tex]\( NH_4Cl \)[/tex] can be calculated as:
[tex]\[ \text{Molar mass of } NH_4Cl = (14.0) + (4 \times 1.00) + (35.45) = 53.45 \, \text{g/mol} \][/tex]
2. Calculate the moles of [tex]\( NH_4Cl \)[/tex] used:
Given that 10.0 grams of [tex]\( NH_4Cl \)[/tex] is used, we can find the number of moles by:
[tex]\[ \text{Moles of } NH_4Cl = \frac{10.0 \, \text{g}}{53.45 \, \text{g/mol}} \approx 0.187 \, \text{moles} \][/tex]
3. Determine the moles of [tex]\( NH_3 \)[/tex] produced:
According to the balanced chemical equation:
[tex]\[ 2 \, NH_4Cl (s) + Ca(OH)_2 (s) \rightarrow CaCl_2 (s) + 2 \, NH_3 (g) + 2 \, H_2O (l) \][/tex]
The stoichiometry shows that 2 moles of [tex]\( NH_4Cl \)[/tex] produce 2 moles of [tex]\( NH_3 \)[/tex]. This is a 1:1 molar ratio. Therefore, the moles of [tex]\( NH_3 \)[/tex] produced will be equal to the moles of [tex]\( NH_4Cl \)[/tex] used:
[tex]\[ \text{Moles of } NH_3 = 0.187 \, \text{moles} \][/tex]
4. Calculate the volume of [tex]\( NH_3 \)[/tex] gas produced at room temperature and pressure:
At room temperature and pressure (RTP), 1 mole of any gas occupies 24 dm³. Therefore:
[tex]\[ \text{Volume of } NH_3 \text{ gas} = \text{Moles of } NH_3 \times 24 \, \text{dm}^3/\text{mol} \][/tex]
Substituting the value we have:
[tex]\[ \text{Volume of } NH_3 \text{ gas} = 0.187 \, \text{moles} \times 24 \, \text{dm}^3/\text{mol} \approx 4.49 \, \text{dm}^3 \][/tex]
Therefore, the maximum volume of ammonia gas ([tex]\( NH_3 \)[/tex]) that could be formed is [tex]\( 4.49 \, \text{dm}^3 \)[/tex].
1. Calculate the molar mass of ammonium chloride ([tex]\( NH_4Cl \)[/tex]):
Ammonium chloride is composed of:
- Nitrogen (N): 1 atom with atomic mass of 14.0
- Hydrogen (H): 4 atoms with atomic mass of 1.00 each
- Chlorine (Cl): 1 atom with atomic mass of 35.45
The molar mass of [tex]\( NH_4Cl \)[/tex] can be calculated as:
[tex]\[ \text{Molar mass of } NH_4Cl = (14.0) + (4 \times 1.00) + (35.45) = 53.45 \, \text{g/mol} \][/tex]
2. Calculate the moles of [tex]\( NH_4Cl \)[/tex] used:
Given that 10.0 grams of [tex]\( NH_4Cl \)[/tex] is used, we can find the number of moles by:
[tex]\[ \text{Moles of } NH_4Cl = \frac{10.0 \, \text{g}}{53.45 \, \text{g/mol}} \approx 0.187 \, \text{moles} \][/tex]
3. Determine the moles of [tex]\( NH_3 \)[/tex] produced:
According to the balanced chemical equation:
[tex]\[ 2 \, NH_4Cl (s) + Ca(OH)_2 (s) \rightarrow CaCl_2 (s) + 2 \, NH_3 (g) + 2 \, H_2O (l) \][/tex]
The stoichiometry shows that 2 moles of [tex]\( NH_4Cl \)[/tex] produce 2 moles of [tex]\( NH_3 \)[/tex]. This is a 1:1 molar ratio. Therefore, the moles of [tex]\( NH_3 \)[/tex] produced will be equal to the moles of [tex]\( NH_4Cl \)[/tex] used:
[tex]\[ \text{Moles of } NH_3 = 0.187 \, \text{moles} \][/tex]
4. Calculate the volume of [tex]\( NH_3 \)[/tex] gas produced at room temperature and pressure:
At room temperature and pressure (RTP), 1 mole of any gas occupies 24 dm³. Therefore:
[tex]\[ \text{Volume of } NH_3 \text{ gas} = \text{Moles of } NH_3 \times 24 \, \text{dm}^3/\text{mol} \][/tex]
Substituting the value we have:
[tex]\[ \text{Volume of } NH_3 \text{ gas} = 0.187 \, \text{moles} \times 24 \, \text{dm}^3/\text{mol} \approx 4.49 \, \text{dm}^3 \][/tex]
Therefore, the maximum volume of ammonia gas ([tex]\( NH_3 \)[/tex]) that could be formed is [tex]\( 4.49 \, \text{dm}^3 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.