Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which equations have no real solutions but have two complex solutions, we need to analyze the discriminant of each quadratic equation. For a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], the discriminant is given by [tex]\( \Delta = b^2 - 4ac \)[/tex].
If the discriminant is less than 0 ([tex]\( \Delta < 0 \)[/tex]), the quadratic equation has two complex solutions.
Let's analyze each given equation:
1. [tex]\( 3x^2 - 5x = -8 \)[/tex]
[tex]\[ \Rightarrow 3x^2 - 5x + 8 = 0 \][/tex]
The discriminant is:
[tex]\[ \Delta = (-5)^2 - 4 \cdot 3 \cdot 8 = 25 - 96 = -71 \][/tex]
Since the discriminant is less than 0, this equation has two complex solutions.
2. [tex]\( 2x^2 = 6x - 5 \)[/tex]
[tex]\[ \Rightarrow 2x^2 - 6x + 5 = 0 \][/tex]
The discriminant is:
[tex]\[ \Delta = (-6)^2 - 4 \cdot 2 \cdot 5 = 36 - 40 = -4 \][/tex]
Since the discriminant is less than 0, this equation also has two complex solutions.
3. [tex]\( 12x = 9x^2 + 4 \)[/tex]
[tex]\[ \Rightarrow 9x^2 - 12x + 4 = 0 \][/tex]
The discriminant is:
[tex]\[ \Delta = (-12)^2 - 4 \cdot 9 \cdot 4 = 144 - 144 = 0 \][/tex]
Since the discriminant is equal to 0, this equation has a double root (one real solution) and not complex solutions.
4. [tex]\( -x^2 - 10x = 34 \)[/tex]
[tex]\[ \Rightarrow -x^2 - 10x - 34 = 0 \][/tex]
The discriminant is:
[tex]\[ \Delta = (-10)^2 - 4 \cdot (-1) \cdot (-34) = 100 - 136 = -36 \][/tex]
Since the discriminant is less than 0, this equation has two complex solutions.
Therefore, the equations that have no real solutions but have two complex solutions are:
[tex]\[ \begin{array}{|c|c|} \hline 3x^2 - 5x = -8 & 2x^2 = 6x - 5 \\ \hline -x^2 - 10x = 34 & \hline \end{array} \][/tex]
If the discriminant is less than 0 ([tex]\( \Delta < 0 \)[/tex]), the quadratic equation has two complex solutions.
Let's analyze each given equation:
1. [tex]\( 3x^2 - 5x = -8 \)[/tex]
[tex]\[ \Rightarrow 3x^2 - 5x + 8 = 0 \][/tex]
The discriminant is:
[tex]\[ \Delta = (-5)^2 - 4 \cdot 3 \cdot 8 = 25 - 96 = -71 \][/tex]
Since the discriminant is less than 0, this equation has two complex solutions.
2. [tex]\( 2x^2 = 6x - 5 \)[/tex]
[tex]\[ \Rightarrow 2x^2 - 6x + 5 = 0 \][/tex]
The discriminant is:
[tex]\[ \Delta = (-6)^2 - 4 \cdot 2 \cdot 5 = 36 - 40 = -4 \][/tex]
Since the discriminant is less than 0, this equation also has two complex solutions.
3. [tex]\( 12x = 9x^2 + 4 \)[/tex]
[tex]\[ \Rightarrow 9x^2 - 12x + 4 = 0 \][/tex]
The discriminant is:
[tex]\[ \Delta = (-12)^2 - 4 \cdot 9 \cdot 4 = 144 - 144 = 0 \][/tex]
Since the discriminant is equal to 0, this equation has a double root (one real solution) and not complex solutions.
4. [tex]\( -x^2 - 10x = 34 \)[/tex]
[tex]\[ \Rightarrow -x^2 - 10x - 34 = 0 \][/tex]
The discriminant is:
[tex]\[ \Delta = (-10)^2 - 4 \cdot (-1) \cdot (-34) = 100 - 136 = -36 \][/tex]
Since the discriminant is less than 0, this equation has two complex solutions.
Therefore, the equations that have no real solutions but have two complex solutions are:
[tex]\[ \begin{array}{|c|c|} \hline 3x^2 - 5x = -8 & 2x^2 = 6x - 5 \\ \hline -x^2 - 10x = 34 & \hline \end{array} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.