Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze the equations one by one to determine which one is in quadratic form.
1. Equation 1:
[tex]\[ 2(x + 5)^3 + 8x + 5 + 6 = 0 \][/tex]
Expanding and simplifying this equation, you can see that it is a polynomial of degree 3 in terms of [tex]\(x\)[/tex]. A quadratic equation must be of degree 2.
2. Equation 2:
[tex]\[ x^6 + 6x^4 + 8 = 0 \][/tex]
We can substitute [tex]\( y = x^2 \)[/tex]. Therefore, [tex]\(x^4\)[/tex] becomes [tex]\(y^2\)[/tex] and [tex]\(x^6\)[/tex] becomes [tex]\(y^3\)[/tex], resulting in:
[tex]\[ y^3 + 6y^2 + 8 = 0 \][/tex]
This is a cubic equation in [tex]\( y \)[/tex], rather than a quadratic equation.
3. Equation 3:
[tex]\[ 7x^6 + 36x^3 + 5 = 0 \][/tex]
We can substitute [tex]\( y = x^3 \)[/tex]. Therefore, [tex]\(x^6\)[/tex] becomes [tex]\(y^2\)[/tex], leading to:
[tex]\[ 7y^2 + 36y + 5 = 0 \][/tex]
This is a quadratic equation in [tex]\( y \)[/tex]. So, when we rewrite it in terms of [tex]\( y = x^3 \)[/tex], it takes on the form of a quadratic equation.
4. Equation 4:
[tex]\[ 4x^9 + 20x^3 + 25 = 0 \][/tex]
We can substitute [tex]\( z = x^3 \)[/tex]. Therefore, [tex]\(x^9\)[/tex] becomes [tex]\(z^3\)[/tex], leading to:
[tex]\[ 4z^3 + 20z + 25 = 0 \][/tex]
This is a cubic equation in [tex]\( z \)[/tex], rather than a quadratic equation.
Based on the above analysis, the equation quadratic in form is:
[tex]\[ 7x^6 + 36x^3 + 5 = 0 \][/tex]
Thus, the answer is:
[tex]\[ 7x^6 + 36x^3 + 5 = 0 \][/tex]
1. Equation 1:
[tex]\[ 2(x + 5)^3 + 8x + 5 + 6 = 0 \][/tex]
Expanding and simplifying this equation, you can see that it is a polynomial of degree 3 in terms of [tex]\(x\)[/tex]. A quadratic equation must be of degree 2.
2. Equation 2:
[tex]\[ x^6 + 6x^4 + 8 = 0 \][/tex]
We can substitute [tex]\( y = x^2 \)[/tex]. Therefore, [tex]\(x^4\)[/tex] becomes [tex]\(y^2\)[/tex] and [tex]\(x^6\)[/tex] becomes [tex]\(y^3\)[/tex], resulting in:
[tex]\[ y^3 + 6y^2 + 8 = 0 \][/tex]
This is a cubic equation in [tex]\( y \)[/tex], rather than a quadratic equation.
3. Equation 3:
[tex]\[ 7x^6 + 36x^3 + 5 = 0 \][/tex]
We can substitute [tex]\( y = x^3 \)[/tex]. Therefore, [tex]\(x^6\)[/tex] becomes [tex]\(y^2\)[/tex], leading to:
[tex]\[ 7y^2 + 36y + 5 = 0 \][/tex]
This is a quadratic equation in [tex]\( y \)[/tex]. So, when we rewrite it in terms of [tex]\( y = x^3 \)[/tex], it takes on the form of a quadratic equation.
4. Equation 4:
[tex]\[ 4x^9 + 20x^3 + 25 = 0 \][/tex]
We can substitute [tex]\( z = x^3 \)[/tex]. Therefore, [tex]\(x^9\)[/tex] becomes [tex]\(z^3\)[/tex], leading to:
[tex]\[ 4z^3 + 20z + 25 = 0 \][/tex]
This is a cubic equation in [tex]\( z \)[/tex], rather than a quadratic equation.
Based on the above analysis, the equation quadratic in form is:
[tex]\[ 7x^6 + 36x^3 + 5 = 0 \][/tex]
Thus, the answer is:
[tex]\[ 7x^6 + 36x^3 + 5 = 0 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.