Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve for the mean radius [tex]\(r\)[/tex] of the orbit in the formula [tex]\( T^2 = \left(\frac{4 \pi^2}{G M}\right) r^3 \)[/tex], we need to isolate [tex]\(r\)[/tex]. Here are the steps:
1. Start with the given formula:
[tex]\[ T^2 = \left(\frac{4 \pi^2}{G M}\right) r^3 \][/tex]
2. To isolate [tex]\( r^3 \)[/tex], multiply both sides of the equation by [tex]\(\frac{G M}{4 \pi^2}\)[/tex]:
[tex]\[ T^2 \cdot \frac{G M}{4 \pi^2} = r^3 \][/tex]
3. Simplify the equation:
[tex]\[ r^3 = \frac{T^2 G M}{4 \pi^2} \][/tex]
4. To solve for [tex]\( r \)[/tex], take the cube root of both sides:
[tex]\[ r = \left( \frac{T^2 G M}{4 \pi^2} \right)^{1/3} \][/tex]
So, the formula to solve for the mean radius [tex]\( r \)[/tex] is:
[tex]\[ r = \left( \frac{T^2 G M}{4 \pi^2} \right)^{1/3} \][/tex]
1. Start with the given formula:
[tex]\[ T^2 = \left(\frac{4 \pi^2}{G M}\right) r^3 \][/tex]
2. To isolate [tex]\( r^3 \)[/tex], multiply both sides of the equation by [tex]\(\frac{G M}{4 \pi^2}\)[/tex]:
[tex]\[ T^2 \cdot \frac{G M}{4 \pi^2} = r^3 \][/tex]
3. Simplify the equation:
[tex]\[ r^3 = \frac{T^2 G M}{4 \pi^2} \][/tex]
4. To solve for [tex]\( r \)[/tex], take the cube root of both sides:
[tex]\[ r = \left( \frac{T^2 G M}{4 \pi^2} \right)^{1/3} \][/tex]
So, the formula to solve for the mean radius [tex]\( r \)[/tex] is:
[tex]\[ r = \left( \frac{T^2 G M}{4 \pi^2} \right)^{1/3} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.