At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the center of a circle given by the equation [tex]\( (x+9)^2 + (y-6)^2 = 10^2 \)[/tex], we need to compare this equation to the standard form of the equation of a circle.
The standard form of the equation of a circle is:
[tex]\[ (x-h)^2 + (y-k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] represents the center of the circle and [tex]\(r\)[/tex] is the radius.
By comparing the given equation [tex]\( (x+9)^2 + (y-6)^2 = 10^2 \)[/tex] with the standard form, we can identify the coordinates of the center [tex]\((h, k)\)[/tex].
1. The term [tex]\( (x+9)^2 \)[/tex] implies that [tex]\( h = -9 \)[/tex]. This is because [tex]\( (x - (-9))^2 = (x + 9)^2 \)[/tex].
2. The term [tex]\( (y-6)^2 \)[/tex] implies that [tex]\( k = 6 \)[/tex]. This is because [tex]\( (y - 6)^2 \)[/tex] is already in the correct format.
Therefore, the center of the circle is:
[tex]\[ (-9, 6) \][/tex]
Given the options:
- [tex]\((-9, 6)\)[/tex]
- [tex]\((-6, 9)\)[/tex]
- [tex]\((6, -9)\)[/tex]
- [tex]\((9, -6)\)[/tex]
The correct answer is:
[tex]\[ (-9, 6) \][/tex]
The standard form of the equation of a circle is:
[tex]\[ (x-h)^2 + (y-k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] represents the center of the circle and [tex]\(r\)[/tex] is the radius.
By comparing the given equation [tex]\( (x+9)^2 + (y-6)^2 = 10^2 \)[/tex] with the standard form, we can identify the coordinates of the center [tex]\((h, k)\)[/tex].
1. The term [tex]\( (x+9)^2 \)[/tex] implies that [tex]\( h = -9 \)[/tex]. This is because [tex]\( (x - (-9))^2 = (x + 9)^2 \)[/tex].
2. The term [tex]\( (y-6)^2 \)[/tex] implies that [tex]\( k = 6 \)[/tex]. This is because [tex]\( (y - 6)^2 \)[/tex] is already in the correct format.
Therefore, the center of the circle is:
[tex]\[ (-9, 6) \][/tex]
Given the options:
- [tex]\((-9, 6)\)[/tex]
- [tex]\((-6, 9)\)[/tex]
- [tex]\((6, -9)\)[/tex]
- [tex]\((9, -6)\)[/tex]
The correct answer is:
[tex]\[ (-9, 6) \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.