Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's describe the transformation process step-by-step for mapping [tex]\( f(x) = |x| \)[/tex] onto [tex]\( g(x) = 5\left|\frac{1}{4}(x+3)\right|-2 \)[/tex].
### Step-by-Step Transformation Process:
1. Horizontal Stretch by a Factor of 4:
- The expression inside the absolute value is [tex]\(\frac{1}{4}(x+3)\)[/tex]. The coefficient [tex]\(\frac{1}{4}\)[/tex] indicates a horizontal stretch.
- Since it's [tex]\(\frac{1}{4}\)[/tex] of [tex]\(x+3\)[/tex], it stretches the graph horizontally by a factor of [tex]\(4\)[/tex] (reciprocal of [tex]\(\frac{1}{4}\)[/tex]).
2. Shift Left by 3 Units:
- The term [tex]\(x + 3\)[/tex] inside the absolute value indicates a horizontal shift.
- Adding [tex]\(3\)[/tex] to [tex]\(x\)[/tex] shifts the graph to the left by [tex]\(3\)[/tex] units.
3. Vertical Stretch by a Factor of 5:
- The coefficient [tex]\(5\)[/tex] outside the absolute value function stretches the graph vertically by a factor of [tex]\(5\)[/tex].
- This means the y-values are multiplied by [tex]\(5\)[/tex].
4. Shift Down by 2 Units:
- The term [tex]\(-2\)[/tex] outside the absolute value function indicates a vertical shift.
- Subtracting [tex]\(2\)[/tex] moves the entire graph down by [tex]\(2\)[/tex] units.
5. Reflection:
- There is no negative sign in front of the absolute value function, so there is no reflection over the x-axis.
### Summary of Transformations:
Here is the list of transformations matched to their values as described above:
- Horizontal Stretch: by a factor of [tex]\(4\)[/tex].
- Shift Left: by [tex]\(3\)[/tex] units.
- Vertical Stretch: by a factor of [tex]\(5\)[/tex].
- Shift Down: by [tex]\(2\)[/tex] units.
- Reflection: None.
Thus, the function [tex]\( g(x) = 5\left|\frac{1}{4}(x+3)\right| - 2 \)[/tex] is obtained by applying these transformations to the base function [tex]\( f(x) = |x| \)[/tex].
### Step-by-Step Transformation Process:
1. Horizontal Stretch by a Factor of 4:
- The expression inside the absolute value is [tex]\(\frac{1}{4}(x+3)\)[/tex]. The coefficient [tex]\(\frac{1}{4}\)[/tex] indicates a horizontal stretch.
- Since it's [tex]\(\frac{1}{4}\)[/tex] of [tex]\(x+3\)[/tex], it stretches the graph horizontally by a factor of [tex]\(4\)[/tex] (reciprocal of [tex]\(\frac{1}{4}\)[/tex]).
2. Shift Left by 3 Units:
- The term [tex]\(x + 3\)[/tex] inside the absolute value indicates a horizontal shift.
- Adding [tex]\(3\)[/tex] to [tex]\(x\)[/tex] shifts the graph to the left by [tex]\(3\)[/tex] units.
3. Vertical Stretch by a Factor of 5:
- The coefficient [tex]\(5\)[/tex] outside the absolute value function stretches the graph vertically by a factor of [tex]\(5\)[/tex].
- This means the y-values are multiplied by [tex]\(5\)[/tex].
4. Shift Down by 2 Units:
- The term [tex]\(-2\)[/tex] outside the absolute value function indicates a vertical shift.
- Subtracting [tex]\(2\)[/tex] moves the entire graph down by [tex]\(2\)[/tex] units.
5. Reflection:
- There is no negative sign in front of the absolute value function, so there is no reflection over the x-axis.
### Summary of Transformations:
Here is the list of transformations matched to their values as described above:
- Horizontal Stretch: by a factor of [tex]\(4\)[/tex].
- Shift Left: by [tex]\(3\)[/tex] units.
- Vertical Stretch: by a factor of [tex]\(5\)[/tex].
- Shift Down: by [tex]\(2\)[/tex] units.
- Reflection: None.
Thus, the function [tex]\( g(x) = 5\left|\frac{1}{4}(x+3)\right| - 2 \)[/tex] is obtained by applying these transformations to the base function [tex]\( f(x) = |x| \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.