At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Find the solution(s) to [tex]\((x-3)^2=49\)[/tex]. Check all that apply.

A. [tex]\(x=-7\)[/tex]
B. [tex]\(x=10\)[/tex]
C. [tex]\(x=7\)[/tex]
D. [tex]\(x=-4\)[/tex]
E. [tex]\(x=-10\)[/tex]

Sagot :

Alright, let's solve the given equation step-by-step:

The equation given is [tex]\((x - 3)^2 = 49\)[/tex].

First, we need to eliminate the square by taking the square root on both sides of the equation:
[tex]\[ \sqrt{(x - 3)^2} = \sqrt{49} \][/tex]

This results in:
[tex]\[ |x - 3| = 7 \][/tex]

The absolute value equation [tex]\(|x - 3| = 7\)[/tex] implies two possible scenarios:
1. [tex]\(x - 3 = 7\)[/tex]
2. [tex]\(x - 3 = -7\)[/tex]

Let's solve for [tex]\(x\)[/tex] in each case:

1. [tex]\(x - 3 = 7\)[/tex]
[tex]\[ x = 7 + 3 \][/tex]
[tex]\[ x = 10 \][/tex]

2. [tex]\(x - 3 = -7\)[/tex]
[tex]\[ x = -7 + 3 \][/tex]
[tex]\[ x = -4 \][/tex]

Thus, the solutions to the equation [tex]\((x - 3)^2 = 49\)[/tex] are:
[tex]\[ x = 10 \quad \text{and} \quad x = -4 \][/tex]

So, checking each option:

A. [tex]\(x = -7\)[/tex] is not a solution.
B. [tex]\(x = 10\)[/tex] is a solution.
C. [tex]\(x = 7\)[/tex] is not a solution.
D. [tex]\(x = -4\)[/tex] is a solution.
E. [tex]\(x = -10\)[/tex] is not a solution.

Therefore, the correct options are:
B. [tex]\(x = 10\)[/tex]
D. [tex]\(x = -4\)[/tex]