Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which of the provided choices are solutions to the given equation, let's solve the equation step by step.
Given equation:
[tex]\[ x^2 - 3x + 27 = 6x + 7 \][/tex]
Step 1: Move all terms to one side of the equation. We do this by subtracting [tex]\(6x + 7\)[/tex] from both sides:
[tex]\[ x^2 - 3x + 27 - 6x - 7 = 0 \][/tex]
Step 2: Simplify the equation:
[tex]\[ x^2 - 3x - 6x + 27 - 7 = 0 \][/tex]
[tex]\[ x^2 - 9x + 20 = 0 \][/tex]
Step 3: Factor the quadratic equation:
[tex]\[ x^2 - 9x + 20 = (x - 4)(x - 5) = 0 \][/tex]
Step 4: Solve for [tex]\(x\)[/tex] by setting each factor to zero:
[tex]\[ x - 4 = 0 \quad \text{or} \quad x - 5 = 0 \][/tex]
[tex]\[ x = 4 \quad \text{or} \quad x = 5 \][/tex]
So, the solutions to the equation are [tex]\(x = 4\)[/tex] and [tex]\(x = 5\)[/tex].
Step 5: Check each given choice to see if it is a solution:
- For [tex]\(x = 3\)[/tex]:
[tex]\[ 3^2 - 3(3) + 27 = 9 - 9 + 27 = 27 \][/tex]
[tex]\[ 6(3) + 7 = 18 + 7 = 25 \][/tex]
Since [tex]\(27 \neq 25\)[/tex], [tex]\(x = 3\)[/tex] is not a solution.
- For [tex]\(x = 5\)[/tex]:
[tex]\[ 5^2 - 3(5) + 27 = 25 - 15 + 27 = 37 \][/tex]
[tex]\[ 6(5) + 7 = 30 + 7 = 37 \][/tex]
Since [tex]\(37 = 37\)[/tex], [tex]\(x = 5\)[/tex] is a solution.
- For [tex]\(x = -4\)[/tex]:
[tex]\[ (-4)^2 - 3(-4) + 27 = 16 + 12 + 27 = 55 \][/tex]
[tex]\[ 6(-4) + 7 = -24 + 7 = -17 \][/tex]
Since [tex]\(55 \neq -17\)[/tex], [tex]\(x = -4\)[/tex] is not a solution.
- For [tex]\(x = 4\)[/tex]:
[tex]\[ 4^2 - 3(4) + 27 = 16 - 12 + 27 = 31 \][/tex]
[tex]\[ 6(4) + 7 = 24 + 7 = 31 \][/tex]
Since [tex]\(31 = 31\)[/tex], [tex]\(x = 4\)[/tex] is a solution.
Therefore, the solutions from the given choices that satisfy the equation are:
[tex]\[ \boxed{5} \text{ and } \boxed{4} \][/tex]
Given equation:
[tex]\[ x^2 - 3x + 27 = 6x + 7 \][/tex]
Step 1: Move all terms to one side of the equation. We do this by subtracting [tex]\(6x + 7\)[/tex] from both sides:
[tex]\[ x^2 - 3x + 27 - 6x - 7 = 0 \][/tex]
Step 2: Simplify the equation:
[tex]\[ x^2 - 3x - 6x + 27 - 7 = 0 \][/tex]
[tex]\[ x^2 - 9x + 20 = 0 \][/tex]
Step 3: Factor the quadratic equation:
[tex]\[ x^2 - 9x + 20 = (x - 4)(x - 5) = 0 \][/tex]
Step 4: Solve for [tex]\(x\)[/tex] by setting each factor to zero:
[tex]\[ x - 4 = 0 \quad \text{or} \quad x - 5 = 0 \][/tex]
[tex]\[ x = 4 \quad \text{or} \quad x = 5 \][/tex]
So, the solutions to the equation are [tex]\(x = 4\)[/tex] and [tex]\(x = 5\)[/tex].
Step 5: Check each given choice to see if it is a solution:
- For [tex]\(x = 3\)[/tex]:
[tex]\[ 3^2 - 3(3) + 27 = 9 - 9 + 27 = 27 \][/tex]
[tex]\[ 6(3) + 7 = 18 + 7 = 25 \][/tex]
Since [tex]\(27 \neq 25\)[/tex], [tex]\(x = 3\)[/tex] is not a solution.
- For [tex]\(x = 5\)[/tex]:
[tex]\[ 5^2 - 3(5) + 27 = 25 - 15 + 27 = 37 \][/tex]
[tex]\[ 6(5) + 7 = 30 + 7 = 37 \][/tex]
Since [tex]\(37 = 37\)[/tex], [tex]\(x = 5\)[/tex] is a solution.
- For [tex]\(x = -4\)[/tex]:
[tex]\[ (-4)^2 - 3(-4) + 27 = 16 + 12 + 27 = 55 \][/tex]
[tex]\[ 6(-4) + 7 = -24 + 7 = -17 \][/tex]
Since [tex]\(55 \neq -17\)[/tex], [tex]\(x = -4\)[/tex] is not a solution.
- For [tex]\(x = 4\)[/tex]:
[tex]\[ 4^2 - 3(4) + 27 = 16 - 12 + 27 = 31 \][/tex]
[tex]\[ 6(4) + 7 = 24 + 7 = 31 \][/tex]
Since [tex]\(31 = 31\)[/tex], [tex]\(x = 4\)[/tex] is a solution.
Therefore, the solutions from the given choices that satisfy the equation are:
[tex]\[ \boxed{5} \text{ and } \boxed{4} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.