Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the quadratic equation [tex]\( x^2 - 2x - 24 = 0 \)[/tex] step by step.
1. Rewrite the equation:
The equation we need to solve is:
[tex]\[ x^2 - 2x - 24 = 0 \][/tex]
2. Identify the coefficients:
For a quadratic equation in the form [tex]\( ax^2 + bx + c = 0 \)[/tex], we identify [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -24 \)[/tex].
3. Use the quadratic formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
4. Plug in the coefficients:
[tex]\[ a = 1, \, b = -2, \, c = -24 \][/tex]
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-24)}}{2 \cdot 1} \][/tex]
5. Simplify inside the square root:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 96}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{100}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm 10}{2} \][/tex]
6. Find the two potential solutions by splitting the expression:
[tex]\[ \text{Solution 1: } x = \frac{2 + 10}{2} = \frac{12}{2} = 6 \][/tex]
[tex]\[ \text{Solution 2: } x = \frac{2 - 10}{2} = \frac{-8}{2} = -4 \][/tex]
7. List the solutions:
The solutions to the equation [tex]\( x^2 - 2x - 24 = 0 \)[/tex] are [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex].
8. Match the solutions with the given choices:
- A. -6
- B. -24
- C. -4 (Correct)
- D. 4
- E. 6 (Correct)
Therefore, the correct solutions to the equation [tex]\( x^2 - 2x - 24 = 0 \)[/tex] are:
- C. -4
- E. 6
1. Rewrite the equation:
The equation we need to solve is:
[tex]\[ x^2 - 2x - 24 = 0 \][/tex]
2. Identify the coefficients:
For a quadratic equation in the form [tex]\( ax^2 + bx + c = 0 \)[/tex], we identify [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -24 \)[/tex].
3. Use the quadratic formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
4. Plug in the coefficients:
[tex]\[ a = 1, \, b = -2, \, c = -24 \][/tex]
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-24)}}{2 \cdot 1} \][/tex]
5. Simplify inside the square root:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 96}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm \sqrt{100}}{2} \][/tex]
[tex]\[ x = \frac{2 \pm 10}{2} \][/tex]
6. Find the two potential solutions by splitting the expression:
[tex]\[ \text{Solution 1: } x = \frac{2 + 10}{2} = \frac{12}{2} = 6 \][/tex]
[tex]\[ \text{Solution 2: } x = \frac{2 - 10}{2} = \frac{-8}{2} = -4 \][/tex]
7. List the solutions:
The solutions to the equation [tex]\( x^2 - 2x - 24 = 0 \)[/tex] are [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex].
8. Match the solutions with the given choices:
- A. -6
- B. -24
- C. -4 (Correct)
- D. 4
- E. 6 (Correct)
Therefore, the correct solutions to the equation [tex]\( x^2 - 2x - 24 = 0 \)[/tex] are:
- C. -4
- E. 6
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.