Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the equation [tex]\( x^2 = 20 \)[/tex] step-by-step to find the correct solutions.
1. Start with the given equation:
[tex]\[ x^2 = 20 \][/tex]
2. Take the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \pm \sqrt{20} \][/tex]
3. Simplify [tex]\( \sqrt{20} \)[/tex]:
- Break down 20 into its prime factors: [tex]\( 20 = 4 \times 5 \)[/tex].
- Therefore, [tex]\( \sqrt{20} = \sqrt{4 \times 5} \)[/tex].
- The square root of a product can be taken as the product of the square roots: [tex]\( \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} \)[/tex].
- We know that [tex]\( \sqrt{4} = 2 \)[/tex], so:
[tex]\[ \sqrt{20} = 2 \times \sqrt{5} \][/tex]
4. Include the [tex]\( \pm \)[/tex] to account for both positive and negative solutions:
[tex]\[ x = \pm 2 \sqrt{5} \][/tex]
So, the solutions to the equation [tex]\( x^2 = 20 \)[/tex] are [tex]\( x = 2 \sqrt{5} \)[/tex] and [tex]\( x = -2 \sqrt{5} \)[/tex].
Given the choices:
- A. [tex]\( x = \pm 5 \sqrt{2} \)[/tex]
- B. [tex]\( x = \pm 10 \sqrt{2} \)[/tex]
- C. [tex]\( x = \pm 2 \sqrt{10} \)[/tex]
- D. [tex]\( x = \pm 2 \sqrt{5} \)[/tex]
The correct answer is:
[tex]\[ \boxed{x = \pm 2 \sqrt{5}} \][/tex]
1. Start with the given equation:
[tex]\[ x^2 = 20 \][/tex]
2. Take the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \pm \sqrt{20} \][/tex]
3. Simplify [tex]\( \sqrt{20} \)[/tex]:
- Break down 20 into its prime factors: [tex]\( 20 = 4 \times 5 \)[/tex].
- Therefore, [tex]\( \sqrt{20} = \sqrt{4 \times 5} \)[/tex].
- The square root of a product can be taken as the product of the square roots: [tex]\( \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} \)[/tex].
- We know that [tex]\( \sqrt{4} = 2 \)[/tex], so:
[tex]\[ \sqrt{20} = 2 \times \sqrt{5} \][/tex]
4. Include the [tex]\( \pm \)[/tex] to account for both positive and negative solutions:
[tex]\[ x = \pm 2 \sqrt{5} \][/tex]
So, the solutions to the equation [tex]\( x^2 = 20 \)[/tex] are [tex]\( x = 2 \sqrt{5} \)[/tex] and [tex]\( x = -2 \sqrt{5} \)[/tex].
Given the choices:
- A. [tex]\( x = \pm 5 \sqrt{2} \)[/tex]
- B. [tex]\( x = \pm 10 \sqrt{2} \)[/tex]
- C. [tex]\( x = \pm 2 \sqrt{10} \)[/tex]
- D. [tex]\( x = \pm 2 \sqrt{5} \)[/tex]
The correct answer is:
[tex]\[ \boxed{x = \pm 2 \sqrt{5}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.