Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the slope of diagonal GE in a square, we need to consider the properties of the square's diagonals.
1. Identify the given slope: We are given the equation of the line on which diagonal FH lies:
[tex]\[ y - 3 = -\frac{1}{3}(x + 9) \][/tex]
From this equation, it's clear that the slope of line FH is [tex]\( -\frac{1}{3} \)[/tex].
2. Understand the relationship between the diagonals: In a square, the diagonals are perpendicular to each other. The product of the slopes of two perpendicular lines is always [tex]\(-1\)[/tex].
3. Calculate the slope of GE: If the slope of FH is [tex]\( -\frac{1}{3} \)[/tex], let’s denote the slope of GE as [tex]\(m\)[/tex]. Since FH and GE are perpendicular,
[tex]\[ \left( -\frac{1}{3} \right) \cdot m = -1 \][/tex]
To find [tex]\(m\)[/tex], solve for [tex]\(m\)[/tex] by isolating it on one side of the equation:
[tex]\[ m = \frac{-1}{-\frac{1}{3}} \][/tex]
Simplifying this results in
[tex]\[ m = 3 \][/tex]
Thus, the slope of diagonal GE is [tex]\(\boxed{3}\)[/tex].
1. Identify the given slope: We are given the equation of the line on which diagonal FH lies:
[tex]\[ y - 3 = -\frac{1}{3}(x + 9) \][/tex]
From this equation, it's clear that the slope of line FH is [tex]\( -\frac{1}{3} \)[/tex].
2. Understand the relationship between the diagonals: In a square, the diagonals are perpendicular to each other. The product of the slopes of two perpendicular lines is always [tex]\(-1\)[/tex].
3. Calculate the slope of GE: If the slope of FH is [tex]\( -\frac{1}{3} \)[/tex], let’s denote the slope of GE as [tex]\(m\)[/tex]. Since FH and GE are perpendicular,
[tex]\[ \left( -\frac{1}{3} \right) \cdot m = -1 \][/tex]
To find [tex]\(m\)[/tex], solve for [tex]\(m\)[/tex] by isolating it on one side of the equation:
[tex]\[ m = \frac{-1}{-\frac{1}{3}} \][/tex]
Simplifying this results in
[tex]\[ m = 3 \][/tex]
Thus, the slope of diagonal GE is [tex]\(\boxed{3}\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.