At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's carefully examine the relationship between Charlotte's and Travis's years of service.
1. Understand the problem statement:
- Charlotte has been working for a certain number of years, which we denote by [tex]\( x \)[/tex].
- Travis has been working for precisely 3 years longer than Charlotte.
2. Define the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- Given that Travis has been working 3 years more than Charlotte, we can express his years of service, [tex]\( y \)[/tex], as:
[tex]\[ y = x + 3 \][/tex]
3. Determine the range of [tex]\( y \)[/tex]:
- Since [tex]\( y \)[/tex] is defined as [tex]\( x + 3 \)[/tex], let's consider what this implies about the possible values of [tex]\( y \)[/tex].
- Regardless of the value of [tex]\( x \)[/tex] (as long as [tex]\( x \geq 0 \)[/tex] because the number of years worked cannot be negative), [tex]\( y \)[/tex] will always be greater than or equal to 3 (since [tex]\( y \)[/tex] is always adding 3 to [tex]\( x \)[/tex]).
4. State the conclusion:
- Therefore, the proper condition representing the range of [tex]\( y \)[/tex] can be described by the inequality:
[tex]\[ y \geq 3 \][/tex]
Hence, the correct answer is:
B. [tex]\( y \geq 3 \)[/tex]
1. Understand the problem statement:
- Charlotte has been working for a certain number of years, which we denote by [tex]\( x \)[/tex].
- Travis has been working for precisely 3 years longer than Charlotte.
2. Define the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- Given that Travis has been working 3 years more than Charlotte, we can express his years of service, [tex]\( y \)[/tex], as:
[tex]\[ y = x + 3 \][/tex]
3. Determine the range of [tex]\( y \)[/tex]:
- Since [tex]\( y \)[/tex] is defined as [tex]\( x + 3 \)[/tex], let's consider what this implies about the possible values of [tex]\( y \)[/tex].
- Regardless of the value of [tex]\( x \)[/tex] (as long as [tex]\( x \geq 0 \)[/tex] because the number of years worked cannot be negative), [tex]\( y \)[/tex] will always be greater than or equal to 3 (since [tex]\( y \)[/tex] is always adding 3 to [tex]\( x \)[/tex]).
4. State the conclusion:
- Therefore, the proper condition representing the range of [tex]\( y \)[/tex] can be described by the inequality:
[tex]\[ y \geq 3 \][/tex]
Hence, the correct answer is:
B. [tex]\( y \geq 3 \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.