Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the inequality [tex]\(2x^2 + 7x + 2 \geq 0\)[/tex], we need to follow these steps:
1. Identify the quadratic function and find its discriminant:
The given quadratic inequality is [tex]\(2x^2 + 7x + 2 \geq 0\)[/tex].
The standard form of a quadratic equation is [tex]\(ax^2 + bx + c\)[/tex], where [tex]\(a = 2\)[/tex], [tex]\(b = 7\)[/tex], and [tex]\(c = 2\)[/tex].
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by [tex]\(\Delta = b^2 - 4ac\)[/tex].
So, [tex]\(\Delta = 7^2 - 4 \cdot 2 \cdot 2 = 49 - 16 = 33\)[/tex].
3. Find the roots of the quadratic equation:
The roots of the quadratic equation are given by:
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_1 = \frac{-7 - \sqrt{33}}{4} \][/tex]
[tex]\[ x_2 = \frac{-7 + \sqrt{33}}{4} \][/tex]
4. Determine the intervals where the inequality holds:
Since the coefficient of [tex]\(x^2\)[/tex] (which is 2) is positive, the parabola opens upwards. Therefore, the quadratic expression [tex]\(2x^2 + 7x + 2\)[/tex] will be greater than or equal to zero outside the interval [tex]\([x_1, x_2]\)[/tex].
5. Write down the solution to the inequality:
Based on the interval analysis, the quadratic inequality [tex]\(2x^2 + 7x + 2 \geq 0\)[/tex] is satisfied for [tex]\(x \leq \frac{-7 - \sqrt{33}}{4}\)[/tex] or [tex]\(x \geq \frac{-7 + \sqrt{33}}{4}\)[/tex].
Among the given choices, this corresponds to option C:
[tex]\[ \boxed{x \leq \frac{-7 - \sqrt{33}}{4} \text{ or } x \geq \frac{-7 + \sqrt{33}}{4}} \][/tex]
1. Identify the quadratic function and find its discriminant:
The given quadratic inequality is [tex]\(2x^2 + 7x + 2 \geq 0\)[/tex].
The standard form of a quadratic equation is [tex]\(ax^2 + bx + c\)[/tex], where [tex]\(a = 2\)[/tex], [tex]\(b = 7\)[/tex], and [tex]\(c = 2\)[/tex].
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by [tex]\(\Delta = b^2 - 4ac\)[/tex].
So, [tex]\(\Delta = 7^2 - 4 \cdot 2 \cdot 2 = 49 - 16 = 33\)[/tex].
3. Find the roots of the quadratic equation:
The roots of the quadratic equation are given by:
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_1 = \frac{-7 - \sqrt{33}}{4} \][/tex]
[tex]\[ x_2 = \frac{-7 + \sqrt{33}}{4} \][/tex]
4. Determine the intervals where the inequality holds:
Since the coefficient of [tex]\(x^2\)[/tex] (which is 2) is positive, the parabola opens upwards. Therefore, the quadratic expression [tex]\(2x^2 + 7x + 2\)[/tex] will be greater than or equal to zero outside the interval [tex]\([x_1, x_2]\)[/tex].
5. Write down the solution to the inequality:
Based on the interval analysis, the quadratic inequality [tex]\(2x^2 + 7x + 2 \geq 0\)[/tex] is satisfied for [tex]\(x \leq \frac{-7 - \sqrt{33}}{4}\)[/tex] or [tex]\(x \geq \frac{-7 + \sqrt{33}}{4}\)[/tex].
Among the given choices, this corresponds to option C:
[tex]\[ \boxed{x \leq \frac{-7 - \sqrt{33}}{4} \text{ or } x \geq \frac{-7 + \sqrt{33}}{4}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.