At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To complete the square and rewrite the quadratic equation [tex]\(y = x^2 - 6x + 14\)[/tex] in vertex form, follow these steps:
### Step 1: Identify the quadratic and linear coefficients
In the equation [tex]\(y = x^2 - 6x + 14\)[/tex], the quadratic coefficient (the coefficient of [tex]\(x^2\)[/tex]) is 1, and the linear coefficient (the coefficient of [tex]\(x\)[/tex]) is -6.
### Step 2: Half the linear coefficient and square it
Take the linear coefficient, -6, divide it by 2, and then square the result:
[tex]\[ \left(\frac{-6}{2}\right)^2 = (-3)^2 = 9 \][/tex]
### Step 3: Add and subtract this square inside the equation
Add and subtract 9 within the quadratic expression:
[tex]\[ y = x^2 - 6x + 9 - 9 + 14 \][/tex]
### Step 4: Rewrite the equation as a perfect square trinomial
Now, combine the first three terms into a perfect square trinomial, and combine the constants:
[tex]\[ y = (x^2 - 6x + 9) + (14 - 9) \][/tex]
[tex]\[ y = (x - 3)^2 + 5 \][/tex]
### Step 5: Express the quadratic in vertex form
The equation is now in the vertex form:
[tex]\[ y = (x - 3)^2 + 5 \][/tex]
### Step 6: Identify the vertex
In the vertex form [tex]\(y = a(x - h)^2 + k\)[/tex], the vertex of the parabola is [tex]\((h, k)\)[/tex]. Here, [tex]\(h = 3\)[/tex] and [tex]\(k = 5\)[/tex]. Thus, the vertex is [tex]\((3, 5)\)[/tex].
### Step 7: Determine if it is a maximum or minimum point
The coefficient of the [tex]\((x - 3)^2\)[/tex] term is positive (1), indicating that the parabola opens upward. Therefore, the vertex represents a minimum point.
### Conclusion
The vertex of the quadratic equation [tex]\(y = x^2 - 6x + 14\)[/tex] is at [tex]\((3, 5)\)[/tex], and it represents a minimum point.
So, the correct answer is:
D. Minimum at [tex]\((3, 5)\)[/tex].
### Step 1: Identify the quadratic and linear coefficients
In the equation [tex]\(y = x^2 - 6x + 14\)[/tex], the quadratic coefficient (the coefficient of [tex]\(x^2\)[/tex]) is 1, and the linear coefficient (the coefficient of [tex]\(x\)[/tex]) is -6.
### Step 2: Half the linear coefficient and square it
Take the linear coefficient, -6, divide it by 2, and then square the result:
[tex]\[ \left(\frac{-6}{2}\right)^2 = (-3)^2 = 9 \][/tex]
### Step 3: Add and subtract this square inside the equation
Add and subtract 9 within the quadratic expression:
[tex]\[ y = x^2 - 6x + 9 - 9 + 14 \][/tex]
### Step 4: Rewrite the equation as a perfect square trinomial
Now, combine the first three terms into a perfect square trinomial, and combine the constants:
[tex]\[ y = (x^2 - 6x + 9) + (14 - 9) \][/tex]
[tex]\[ y = (x - 3)^2 + 5 \][/tex]
### Step 5: Express the quadratic in vertex form
The equation is now in the vertex form:
[tex]\[ y = (x - 3)^2 + 5 \][/tex]
### Step 6: Identify the vertex
In the vertex form [tex]\(y = a(x - h)^2 + k\)[/tex], the vertex of the parabola is [tex]\((h, k)\)[/tex]. Here, [tex]\(h = 3\)[/tex] and [tex]\(k = 5\)[/tex]. Thus, the vertex is [tex]\((3, 5)\)[/tex].
### Step 7: Determine if it is a maximum or minimum point
The coefficient of the [tex]\((x - 3)^2\)[/tex] term is positive (1), indicating that the parabola opens upward. Therefore, the vertex represents a minimum point.
### Conclusion
The vertex of the quadratic equation [tex]\(y = x^2 - 6x + 14\)[/tex] is at [tex]\((3, 5)\)[/tex], and it represents a minimum point.
So, the correct answer is:
D. Minimum at [tex]\((3, 5)\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.