Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the [tex]\(y\)[/tex]-intercept of the line perpendicular to the line [tex]\(y = -\frac{3}{4}x + 5\)[/tex] that passes through the point [tex]\((-3, -3)\)[/tex], follow these steps:
1. Identify the slope of the given line: The given line is [tex]\(y = -\frac{3}{4}x + 5\)[/tex], so the slope (m) is [tex]\(-\frac{3}{4}\)[/tex].
2. Find the slope of the perpendicular line: The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line. Therefore, the slope of the perpendicular line will be:
[tex]\[ \frac{4}{3} \][/tex]
3. Use the point-slope form of the equation of a line: The point-slope form of a line's equation is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line. Here, the slope [tex]\(m\)[/tex] is [tex]\(\frac{4}{3}\)[/tex] and the point given is [tex]\((-3, -3)\)[/tex].
4. Substitute the given point and slope into the point-slope form equation:
[tex]\[ y - (-3) = \frac{4}{3}(x - (-3)) \][/tex]
This simplifies to:
[tex]\[ y + 3 = \frac{4}{3}(x + 3) \][/tex]
5. Isolate [tex]\(y\)[/tex] to get the equation of the line in slope-intercept form:
[tex]\[ y + 3 = \frac{4}{3}x + 4 \][/tex]
Now, subtract 3 from both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{4}{3}x + 1 \][/tex]
6. Identify the [tex]\(y\)[/tex]-intercept: In the equation [tex]\(y = \frac{4}{3}x + 1\)[/tex], the [tex]\(y\)[/tex]-intercept is the constant term independent of [tex]\(x\)[/tex]. Therefore, the [tex]\(y\)[/tex]-intercept is [tex]\(1\)[/tex].
Thus, the [tex]\(y\)[/tex]-intercept of the line perpendicular to [tex]\(y = -\frac{3}{4}x + 5\)[/tex] that passes through the point [tex]\((-3, -3)\)[/tex] is [tex]\(1\)[/tex].
1. Identify the slope of the given line: The given line is [tex]\(y = -\frac{3}{4}x + 5\)[/tex], so the slope (m) is [tex]\(-\frac{3}{4}\)[/tex].
2. Find the slope of the perpendicular line: The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line. Therefore, the slope of the perpendicular line will be:
[tex]\[ \frac{4}{3} \][/tex]
3. Use the point-slope form of the equation of a line: The point-slope form of a line's equation is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line. Here, the slope [tex]\(m\)[/tex] is [tex]\(\frac{4}{3}\)[/tex] and the point given is [tex]\((-3, -3)\)[/tex].
4. Substitute the given point and slope into the point-slope form equation:
[tex]\[ y - (-3) = \frac{4}{3}(x - (-3)) \][/tex]
This simplifies to:
[tex]\[ y + 3 = \frac{4}{3}(x + 3) \][/tex]
5. Isolate [tex]\(y\)[/tex] to get the equation of the line in slope-intercept form:
[tex]\[ y + 3 = \frac{4}{3}x + 4 \][/tex]
Now, subtract 3 from both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{4}{3}x + 1 \][/tex]
6. Identify the [tex]\(y\)[/tex]-intercept: In the equation [tex]\(y = \frac{4}{3}x + 1\)[/tex], the [tex]\(y\)[/tex]-intercept is the constant term independent of [tex]\(x\)[/tex]. Therefore, the [tex]\(y\)[/tex]-intercept is [tex]\(1\)[/tex].
Thus, the [tex]\(y\)[/tex]-intercept of the line perpendicular to [tex]\(y = -\frac{3}{4}x + 5\)[/tex] that passes through the point [tex]\((-3, -3)\)[/tex] is [tex]\(1\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.