At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the equation of a line that is perpendicular to the given line [tex]\(2x + y = -5\)[/tex] and passes through the point [tex]\((-1, -2)\)[/tex], follow these steps:
1. Determine the slope of the given line [tex]\(2x + y = -5\)[/tex]:
- Rewrite the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
- [tex]\(2x + y = -5\)[/tex] can be rewritten as [tex]\(y = -2x - 5\)[/tex].
- Therefore, the slope [tex]\(m\)[/tex] of the given line is [tex]\(-2\)[/tex].
2. Find the slope of the line perpendicular to the given line:
- The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
- The negative reciprocal of [tex]\(-2\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
3. Form the equation of the line in slope-intercept form [tex]\(y = mx + b\)[/tex]:
- Use the point-slope form of the line equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substitute the slope ([tex]\(\frac{1}{2}\)[/tex]) and the given point [tex]\((-1, -2)\)[/tex]:
[tex]\[ y - (-2) = \frac{1}{2}(x - (-1)) \][/tex]
[tex]\[ y + 2 = \frac{1}{2}(x + 1) \][/tex]
4. Solve for the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex]:
- Distribute and solve for [tex]\(y\)[/tex]:
[tex]\[ y + 2 = \frac{1}{2}x + \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2}x + \frac{1}{2} - 2 \][/tex]
[tex]\[ y = \frac{1}{2}x - \frac{3}{2} \][/tex]
Therefore, the equation of the line perpendicular to [tex]\(2x + y = -5\)[/tex] that passes through the point [tex]\((-1, -2)\)[/tex] is [tex]\(y = \frac{1}{2}x - \frac{3}{2}\)[/tex].
Among the given options, the correct equation is:
[tex]\[ \boxed{y = \frac{1}{2}x - \frac{3}{2}} \][/tex]
1. Determine the slope of the given line [tex]\(2x + y = -5\)[/tex]:
- Rewrite the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
- [tex]\(2x + y = -5\)[/tex] can be rewritten as [tex]\(y = -2x - 5\)[/tex].
- Therefore, the slope [tex]\(m\)[/tex] of the given line is [tex]\(-2\)[/tex].
2. Find the slope of the line perpendicular to the given line:
- The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
- The negative reciprocal of [tex]\(-2\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
3. Form the equation of the line in slope-intercept form [tex]\(y = mx + b\)[/tex]:
- Use the point-slope form of the line equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substitute the slope ([tex]\(\frac{1}{2}\)[/tex]) and the given point [tex]\((-1, -2)\)[/tex]:
[tex]\[ y - (-2) = \frac{1}{2}(x - (-1)) \][/tex]
[tex]\[ y + 2 = \frac{1}{2}(x + 1) \][/tex]
4. Solve for the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex]:
- Distribute and solve for [tex]\(y\)[/tex]:
[tex]\[ y + 2 = \frac{1}{2}x + \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2}x + \frac{1}{2} - 2 \][/tex]
[tex]\[ y = \frac{1}{2}x - \frac{3}{2} \][/tex]
Therefore, the equation of the line perpendicular to [tex]\(2x + y = -5\)[/tex] that passes through the point [tex]\((-1, -2)\)[/tex] is [tex]\(y = \frac{1}{2}x - \frac{3}{2}\)[/tex].
Among the given options, the correct equation is:
[tex]\[ \boxed{y = \frac{1}{2}x - \frac{3}{2}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.