Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

The equation of line [tex][tex]$WX$[/tex][/tex] is [tex][tex]$2x + y = -5$[/tex][/tex]. What is the equation of a line perpendicular to line [tex][tex]$WX$[/tex][/tex] in slope-intercept form that contains the point [tex][tex]$(-1, -2)$[/tex][/tex]?

A. [tex]y = \frac{1}{2}x + \frac{3}{2}[/tex]
B. [tex]y = -\frac{1}{2}x + \frac{3}{2}[/tex]
C. [tex]y = \frac{1}{2}x - \frac{3}{2}[/tex]
D. [tex]y = -\frac{1}{2}x - \frac{3}{2}[/tex]


Sagot :

To find the equation of a line that is perpendicular to the given line [tex]\(2x + y = -5\)[/tex] and passes through the point [tex]\((-1, -2)\)[/tex], follow these steps:

1. Determine the slope of the given line [tex]\(2x + y = -5\)[/tex]:
- Rewrite the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
- [tex]\(2x + y = -5\)[/tex] can be rewritten as [tex]\(y = -2x - 5\)[/tex].
- Therefore, the slope [tex]\(m\)[/tex] of the given line is [tex]\(-2\)[/tex].

2. Find the slope of the line perpendicular to the given line:
- The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
- The negative reciprocal of [tex]\(-2\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].

3. Form the equation of the line in slope-intercept form [tex]\(y = mx + b\)[/tex]:
- Use the point-slope form of the line equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substitute the slope ([tex]\(\frac{1}{2}\)[/tex]) and the given point [tex]\((-1, -2)\)[/tex]:
[tex]\[ y - (-2) = \frac{1}{2}(x - (-1)) \][/tex]
[tex]\[ y + 2 = \frac{1}{2}(x + 1) \][/tex]

4. Solve for the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex]:
- Distribute and solve for [tex]\(y\)[/tex]:
[tex]\[ y + 2 = \frac{1}{2}x + \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2}x + \frac{1}{2} - 2 \][/tex]
[tex]\[ y = \frac{1}{2}x - \frac{3}{2} \][/tex]

Therefore, the equation of the line perpendicular to [tex]\(2x + y = -5\)[/tex] that passes through the point [tex]\((-1, -2)\)[/tex] is [tex]\(y = \frac{1}{2}x - \frac{3}{2}\)[/tex].

Among the given options, the correct equation is:
[tex]\[ \boxed{y = \frac{1}{2}x - \frac{3}{2}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.