Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the equation of a line in point-slope form that is parallel to a given line and passes through a specified point, follow these steps:
1. Identify the slope of the given line:
- The given line is [tex]\( y - 1 = -\frac{3}{2}(x + 3) \)[/tex].
- The slope-intercept form of a line is generally [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- For the given equation, the slope [tex]\( m \)[/tex] is [tex]\( -\frac{3}{2} \)[/tex].
2. Recognize that parallel lines have the same slope:
- Since the new line must be parallel to the given line, it will have the same slope [tex]\( m = -\frac{3}{2} \)[/tex].
3. Use the point-slope form of the equation of a line:
- The point-slope form is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line.
- The point given is [tex]\( (-3, 1) \)[/tex].
4. Substitute the point [tex]\((-3, 1)\)[/tex] and the slope [tex]\( -\frac{3}{2} \)[/tex] into the point-slope form:
- Begin by writing the formula: [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Replace [tex]\( y_1 \)[/tex] with 1, [tex]\( m \)[/tex] with [tex]\( -\frac{3}{2} \)[/tex], and [tex]\( x_1 \)[/tex] with [tex]\( -3 \)[/tex].
[tex]\[ y - 1 = -\frac{3}{2}(x - (-3)) \][/tex]
5. Simplify the equation:
- Simplify the expression inside the parenthesis:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
Therefore, the equation in point-slope form of the line that is parallel to the given line and passes through the point [tex]\((-3, 1)\)[/tex] is:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
So the correct answer is:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
1. Identify the slope of the given line:
- The given line is [tex]\( y - 1 = -\frac{3}{2}(x + 3) \)[/tex].
- The slope-intercept form of a line is generally [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- For the given equation, the slope [tex]\( m \)[/tex] is [tex]\( -\frac{3}{2} \)[/tex].
2. Recognize that parallel lines have the same slope:
- Since the new line must be parallel to the given line, it will have the same slope [tex]\( m = -\frac{3}{2} \)[/tex].
3. Use the point-slope form of the equation of a line:
- The point-slope form is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line.
- The point given is [tex]\( (-3, 1) \)[/tex].
4. Substitute the point [tex]\((-3, 1)\)[/tex] and the slope [tex]\( -\frac{3}{2} \)[/tex] into the point-slope form:
- Begin by writing the formula: [tex]\( y - y_1 = m(x - x_1) \)[/tex].
- Replace [tex]\( y_1 \)[/tex] with 1, [tex]\( m \)[/tex] with [tex]\( -\frac{3}{2} \)[/tex], and [tex]\( x_1 \)[/tex] with [tex]\( -3 \)[/tex].
[tex]\[ y - 1 = -\frac{3}{2}(x - (-3)) \][/tex]
5. Simplify the equation:
- Simplify the expression inside the parenthesis:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
Therefore, the equation in point-slope form of the line that is parallel to the given line and passes through the point [tex]\((-3, 1)\)[/tex] is:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
So the correct answer is:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.