Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Using the composition of functions, determine if the two functions are inverses of each other.

[tex]\[
\begin{array}{l}
F(x) = \sqrt{x} - 6 \\
G(x) = (x + 6)^2
\end{array}
\][/tex]

A. No, because the functions contain different operations.
B. No, because the composition does not result in an answer of [tex]$x$[/tex].
C. Yes, because [tex]$F(x)$[/tex] is equal to [tex]$-G(x)$[/tex].
D. Yes, but only within the domain [tex]$x \geq 0$[/tex].


Sagot :

To determine if two functions are inverses of each other, we need to examine their composition in both possible orders: [tex]\( F(G(x)) \)[/tex] and [tex]\( G(F(x)) \)[/tex]. If both compositions simplify to [tex]\( x \)[/tex], then the functions are indeed inverses of each other.

Let's denote the given functions:
[tex]\[ F(x) = \sqrt{x} - 6 \][/tex]
[tex]\[ G(x) = (x + 6)^2 \][/tex]

### Finding [tex]\( F(G(x)) \)[/tex]:

First, we'll substitute [tex]\( G(x) \)[/tex] into [tex]\( F(x) \)[/tex]:
[tex]\[ F(G(x)) = F((x + 6)^2) \][/tex]
Substituting [tex]\( (x + 6)^2 \)[/tex] into [tex]\( F(x) \)[/tex]:
[tex]\[ F((x + 6)^2) = \sqrt{(x + 6)^2} - 6 \][/tex]

Now simplify [tex]\( \sqrt{(x + 6)^2} \)[/tex]:
[tex]\[ \sqrt{(x + 6)^2} = |x + 6| \][/tex]

Thus,
[tex]\[ F(G(x)) = |x + 6| - 6 \][/tex]

Given [tex]\( G(x) = (x + 6)^2 \)[/tex] which is always non-negative for real [tex]\( x \)[/tex], and considering the square root operation returns the principal (non-negative) square root,
[tex]\[ |x + 6| = x + 6 \][/tex]
So,
[tex]\[ F(G(x)) = x + 6 - 6 = x \][/tex]

Hence,
[tex]\[ F(G(x)) = x \][/tex]

### Finding [tex]\( G(F(x)) \)[/tex]:

Next, substitute [tex]\( F(x) \)[/tex] into [tex]\( G(x) \)[/tex]:
[tex]\[ G(F(x)) = G(\sqrt{x} - 6) \][/tex]
Substituting [tex]\( \sqrt{x} - 6 \)[/tex] into [tex]\( G(x) \)[/tex]:
[tex]\[ G(\sqrt{x} - 6) = (\sqrt{x} - 6 + 6)^2 = (\sqrt{x})^2 \][/tex]

Simplifying,
[tex]\[ (\sqrt{x})^2 = x \][/tex]

Thus,
[tex]\[ G(F(x)) = x \][/tex]

### Conclusion:

Since both compositions [tex]\( F(G(x)) \)[/tex] and [tex]\( G(F(x)) \)[/tex] simplify to [tex]\( x \)[/tex], we conclude that [tex]\( F(x) \)[/tex] and [tex]\( G(x) \)[/tex] are indeed inverses of each other.

Therefore, the appropriate answer is:

D. Yes, but only within the domain [tex]\( x \geq 0 \)[/tex].

The domain constraint is due to the square root function [tex]\( \sqrt{x} \)[/tex], which requires [tex]\( x \geq 0 \)[/tex] to be defined in the real numbers.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.