Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Using the composition of functions, determine if the two functions are inverses of each other.

[tex]\[
\begin{array}{l}
F(x) = \sqrt{x} - 6 \\
G(x) = (x + 6)^2
\end{array}
\][/tex]

A. No, because the functions contain different operations.
B. No, because the composition does not result in an answer of [tex]$x$[/tex].
C. Yes, because [tex]$F(x)$[/tex] is equal to [tex]$-G(x)$[/tex].
D. Yes, but only within the domain [tex]$x \geq 0$[/tex].


Sagot :

To determine if two functions are inverses of each other, we need to examine their composition in both possible orders: [tex]\( F(G(x)) \)[/tex] and [tex]\( G(F(x)) \)[/tex]. If both compositions simplify to [tex]\( x \)[/tex], then the functions are indeed inverses of each other.

Let's denote the given functions:
[tex]\[ F(x) = \sqrt{x} - 6 \][/tex]
[tex]\[ G(x) = (x + 6)^2 \][/tex]

### Finding [tex]\( F(G(x)) \)[/tex]:

First, we'll substitute [tex]\( G(x) \)[/tex] into [tex]\( F(x) \)[/tex]:
[tex]\[ F(G(x)) = F((x + 6)^2) \][/tex]
Substituting [tex]\( (x + 6)^2 \)[/tex] into [tex]\( F(x) \)[/tex]:
[tex]\[ F((x + 6)^2) = \sqrt{(x + 6)^2} - 6 \][/tex]

Now simplify [tex]\( \sqrt{(x + 6)^2} \)[/tex]:
[tex]\[ \sqrt{(x + 6)^2} = |x + 6| \][/tex]

Thus,
[tex]\[ F(G(x)) = |x + 6| - 6 \][/tex]

Given [tex]\( G(x) = (x + 6)^2 \)[/tex] which is always non-negative for real [tex]\( x \)[/tex], and considering the square root operation returns the principal (non-negative) square root,
[tex]\[ |x + 6| = x + 6 \][/tex]
So,
[tex]\[ F(G(x)) = x + 6 - 6 = x \][/tex]

Hence,
[tex]\[ F(G(x)) = x \][/tex]

### Finding [tex]\( G(F(x)) \)[/tex]:

Next, substitute [tex]\( F(x) \)[/tex] into [tex]\( G(x) \)[/tex]:
[tex]\[ G(F(x)) = G(\sqrt{x} - 6) \][/tex]
Substituting [tex]\( \sqrt{x} - 6 \)[/tex] into [tex]\( G(x) \)[/tex]:
[tex]\[ G(\sqrt{x} - 6) = (\sqrt{x} - 6 + 6)^2 = (\sqrt{x})^2 \][/tex]

Simplifying,
[tex]\[ (\sqrt{x})^2 = x \][/tex]

Thus,
[tex]\[ G(F(x)) = x \][/tex]

### Conclusion:

Since both compositions [tex]\( F(G(x)) \)[/tex] and [tex]\( G(F(x)) \)[/tex] simplify to [tex]\( x \)[/tex], we conclude that [tex]\( F(x) \)[/tex] and [tex]\( G(x) \)[/tex] are indeed inverses of each other.

Therefore, the appropriate answer is:

D. Yes, but only within the domain [tex]\( x \geq 0 \)[/tex].

The domain constraint is due to the square root function [tex]\( \sqrt{x} \)[/tex], which requires [tex]\( x \geq 0 \)[/tex] to be defined in the real numbers.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.