Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

(23) One of the angles of a triangle is 80° and the other two angles are equal.

Find the measure of the equal angles.


Sagot :

Certainly! Let's solve this problem step by step.

1. Understand the problem statement:
We are given a triangle with one angle measuring 80°, and we are told that the other two angles are equal.

2. Recall the property of angles in a triangle:
The sum of the interior angles of any triangle is always 180°.

3. Set up an equation:
Since one angle is given as 80°, let's denote each of the equal angles by [tex]\( x \)[/tex]. Therefore, we have:
[tex]\[ 80° + x + x = 180° \][/tex]

4. Combine like terms:
Simplify the equation by combining the [tex]\( x \)[/tex] terms together:
[tex]\[ 80° + 2x = 180° \][/tex]

5. Isolate [tex]\( x \)[/tex]:
To find the value of [tex]\( x \)[/tex], subtract 80° from both sides of the equation:
[tex]\[ 2x = 180° - 80° \][/tex]
[tex]\[ 2x = 100° \][/tex]

6. Solve for [tex]\( x \)[/tex]:
Now, divide both sides of the equation by 2:
[tex]\[ x = \frac{100°}{2} \][/tex]
[tex]\[ x = 50° \][/tex]

7. Conclusion:
The measure of each of the equal angles is 50°.

So, the two equal angles in the triangle each measure 50°.