Answered

Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Solve for [tex][tex]$x$[/tex][/tex]:

[tex][tex]$f\left(f^{-1}(x)\right)=$[/tex][/tex]

Type your answer...


Sagot :

To solve for [tex]\( x \)[/tex] in the equation [tex]\( f\left(f^{-1}(x)\right) = x \)[/tex], let's follow these steps in detail:

1. Understanding the Function and Its Inverse:
- The symbol [tex]\( f^{-1} \)[/tex] denotes the inverse function of [tex]\( f \)[/tex].
- By definition, applying a function [tex]\( f \)[/tex] to its inverse [tex]\( f^{-1} \)[/tex] should yield the original input [tex]\( x \)[/tex].
- Mathematically, [tex]\( f(f^{-1}(x)) = x \)[/tex].

2. Interpreting the Equation:
- The equation [tex]\( f(f^{-1}(x)) = x \)[/tex] means that if you take the inverse function of [tex]\( x \)[/tex] and then apply the function [tex]\( f \)[/tex] to that result, you will end up with [tex]\( x \)[/tex].

3. Solving for [tex]\( x \)[/tex]:
- When you apply the function [tex]\( f \)[/tex] to [tex]\( f^{-1}(x) \)[/tex], the output is simply [tex]\( x \)[/tex].
- This is a fundamental property of functions and their inverses and holds true for any [tex]\( x \)[/tex].

Therefore, the solution to the equation [tex]\( f\left(f^{-1}(x)\right) \)[/tex] is:

[tex]\[ x \][/tex]