Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve for [tex]\( x \)[/tex] in the equation [tex]\( f\left(f^{-1}(x)\right) = x \)[/tex], let's follow these steps in detail:
1. Understanding the Function and Its Inverse:
- The symbol [tex]\( f^{-1} \)[/tex] denotes the inverse function of [tex]\( f \)[/tex].
- By definition, applying a function [tex]\( f \)[/tex] to its inverse [tex]\( f^{-1} \)[/tex] should yield the original input [tex]\( x \)[/tex].
- Mathematically, [tex]\( f(f^{-1}(x)) = x \)[/tex].
2. Interpreting the Equation:
- The equation [tex]\( f(f^{-1}(x)) = x \)[/tex] means that if you take the inverse function of [tex]\( x \)[/tex] and then apply the function [tex]\( f \)[/tex] to that result, you will end up with [tex]\( x \)[/tex].
3. Solving for [tex]\( x \)[/tex]:
- When you apply the function [tex]\( f \)[/tex] to [tex]\( f^{-1}(x) \)[/tex], the output is simply [tex]\( x \)[/tex].
- This is a fundamental property of functions and their inverses and holds true for any [tex]\( x \)[/tex].
Therefore, the solution to the equation [tex]\( f\left(f^{-1}(x)\right) \)[/tex] is:
[tex]\[ x \][/tex]
1. Understanding the Function and Its Inverse:
- The symbol [tex]\( f^{-1} \)[/tex] denotes the inverse function of [tex]\( f \)[/tex].
- By definition, applying a function [tex]\( f \)[/tex] to its inverse [tex]\( f^{-1} \)[/tex] should yield the original input [tex]\( x \)[/tex].
- Mathematically, [tex]\( f(f^{-1}(x)) = x \)[/tex].
2. Interpreting the Equation:
- The equation [tex]\( f(f^{-1}(x)) = x \)[/tex] means that if you take the inverse function of [tex]\( x \)[/tex] and then apply the function [tex]\( f \)[/tex] to that result, you will end up with [tex]\( x \)[/tex].
3. Solving for [tex]\( x \)[/tex]:
- When you apply the function [tex]\( f \)[/tex] to [tex]\( f^{-1}(x) \)[/tex], the output is simply [tex]\( x \)[/tex].
- This is a fundamental property of functions and their inverses and holds true for any [tex]\( x \)[/tex].
Therefore, the solution to the equation [tex]\( f\left(f^{-1}(x)\right) \)[/tex] is:
[tex]\[ x \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.