Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

If [tex][tex]$h(x)=(f \circ g)(x)$[/tex][/tex] and [tex][tex]$h(x)=\sqrt{x+5}$[/tex][/tex], find [tex][tex]$g(x)$[/tex][/tex] if [tex][tex]$f(x)=\sqrt{x+2}$[/tex][/tex].

Sagot :

To solve for [tex]\( g(x) \)[/tex] given the functions [tex]\( h(x) \)[/tex] and [tex]\( f(x) \)[/tex], we need to understand the relationship between these functions. The composition [tex]\( (f \circ g)(x) \)[/tex] means that we apply [tex]\( g(x) \)[/tex] first and then apply [tex]\( f \)[/tex].

Given the following:
[tex]\[ h(x) = \sqrt{x + 5} \][/tex]
[tex]\[ f(x) = \sqrt{x + 2} \][/tex]
and the relationship:
[tex]\[ h(x) = (f \circ g)(x) \][/tex]

This implies that:
[tex]\[ h(x) = f(g(x)) \][/tex]

We can set the function definitions equal:
[tex]\[ \sqrt{x + 5} = \sqrt{g(x) + 2} \][/tex]

To simplify this equation, we can eliminate the square roots by squaring both sides:
[tex]\[ (\sqrt{x + 5})^2 = (\sqrt{g(x) + 2})^2 \][/tex]

This simplifies to:
[tex]\[ x + 5 = g(x) + 2 \][/tex]

Now, solve for [tex]\( g(x) \)[/tex]:
[tex]\[ x + 5 = g(x) + 2 \implies g(x) = x + 5 - 2 \implies g(x) = x + 3 \][/tex]

Therefore, the function [tex]\( g(x) \)[/tex] is:
[tex]\[ g(x) = x + 3 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.