At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the domain of the function [tex]\( y = 2 \sqrt{x-6} \)[/tex], we need to ensure that all operations within the function are valid for real numbers.
1. The relevant part of the function is the square root [tex]\( \sqrt{x-6} \)[/tex]. For the square root function to be defined, the expression inside the square root must be non-negative because the square root of a negative number is not a real number.
2. Set up the inequality to ensure the argument of the square root is non-negative:
[tex]\[ x - 6 \geq 0 \][/tex]
3. Solve this inequality for [tex]\( x \)[/tex]:
[tex]\[ x \geq 6 \][/tex]
4. This implies that [tex]\( x \)[/tex] must be at least 6. Therefore, the domain is all [tex]\( x \)[/tex] such that [tex]\( x \ge 6 \)[/tex].
5. Expressing this in interval notation, the domain is:
[tex]\[ [6, \infty) \][/tex]
Looking at the answer choices provided:
1. [tex]\( -\infty < x < \infty \)[/tex]
2. [tex]\( 0 \leq x < \infty \)[/tex]
3. [tex]\( 3 \leq x < \infty \)[/tex]
4. [tex]\( 6 \leq x < \infty \)[/tex]
The correct answer is:
[tex]\[ 6 \leq x < \infty \][/tex]
So, the domain of the function [tex]\( y = 2 \sqrt{x-6} \)[/tex] is given by the fourth option: [tex]\( 6 \leq x < \infty \)[/tex].
1. The relevant part of the function is the square root [tex]\( \sqrt{x-6} \)[/tex]. For the square root function to be defined, the expression inside the square root must be non-negative because the square root of a negative number is not a real number.
2. Set up the inequality to ensure the argument of the square root is non-negative:
[tex]\[ x - 6 \geq 0 \][/tex]
3. Solve this inequality for [tex]\( x \)[/tex]:
[tex]\[ x \geq 6 \][/tex]
4. This implies that [tex]\( x \)[/tex] must be at least 6. Therefore, the domain is all [tex]\( x \)[/tex] such that [tex]\( x \ge 6 \)[/tex].
5. Expressing this in interval notation, the domain is:
[tex]\[ [6, \infty) \][/tex]
Looking at the answer choices provided:
1. [tex]\( -\infty < x < \infty \)[/tex]
2. [tex]\( 0 \leq x < \infty \)[/tex]
3. [tex]\( 3 \leq x < \infty \)[/tex]
4. [tex]\( 6 \leq x < \infty \)[/tex]
The correct answer is:
[tex]\[ 6 \leq x < \infty \][/tex]
So, the domain of the function [tex]\( y = 2 \sqrt{x-6} \)[/tex] is given by the fourth option: [tex]\( 6 \leq x < \infty \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.