Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's determine the correct position for point [tex]\( H \)[/tex] that ensures Alex uses no more than 20 units of fencing by considering the given points and the available fencing.
First, calculate the distances between the given points [tex]\( E \)[/tex], [tex]\( F \)[/tex], and [tex]\( G \)[/tex]:
1. Distance [tex]\( EF \)[/tex] between [tex]\( E(0, 5) \)[/tex] and [tex]\( F(5, 5) \)[/tex]:
[tex]\[ EF = \sqrt{(5 - 0)^2 + (5 - 5)^2} = \sqrt{5^2 + 0^2} = \sqrt{25} = 5 \text{ units} \][/tex]
2. Distance [tex]\( FG \)[/tex] between [tex]\( F(5, 5) \)[/tex] and [tex]\( G(1, 1) \)[/tex]:
[tex]\[ FG = \sqrt{(1 - 5)^2 + (1 - 5)^2} = \sqrt{(-4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2} \text{ units} \][/tex]
3. Distance [tex]\( GE \)[/tex] between [tex]\( G(1, 1) \)[/tex] and [tex]\( E(0, 5) \)[/tex]:
[tex]\[ GE = \sqrt{(0 - 1)^2 + (5 - 1)^2} = \sqrt{(-1)^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \text{ units} \][/tex]
Next, calculate the total fencing used by summing these distances:
[tex]\[ \text{Total fencing used} = EF + FG + GE = 5 + 4\sqrt{2} + \sqrt{17} \][/tex]
Given that Alex has 20 units of fencing, the remaining fencing available for the fourth side [tex]\( GH \)[/tex] is:
[tex]\[ \text{Remaining fencing} = 20 - (5 + 4\sqrt{2} + \sqrt{17}) \][/tex]
To decide where point [tex]\( H \)[/tex] could be placed, we evaluate the distances from point [tex]\( G \)[/tex] to each of the four potential points for [tex]\( H \)[/tex]:
1. Distance [tex]\( GH1 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H1 (-3, 1) \)[/tex]:
[tex]\[ GH1 = \sqrt{(-3 - 1)^2 + (1 - 1)^2} = \sqrt{(-4)^2 + 0^2} = \sqrt{16} = 4 \text{ units} \][/tex]
2. Distance [tex]\( GH2 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H2 (-3, -1) \)[/tex]:
[tex]\[ GH2 = \sqrt{(-3 - 1)^2 + (-1 - 1)^2} = \sqrt{(-4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} \text{ units} \][/tex]
3. Distance [tex]\( GH3 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H3 (-5, 1) \)[/tex]:
[tex]\[ GH3 = \sqrt{(-5 - 1)^2 + (1 - 1)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \text{ units} \][/tex]
4. Distance [tex]\( GH4 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H4 (-5, -1) \)[/tex]:
[tex]\[ GH4 = \sqrt{(-5 - 1)^2 + (-1 - 1)^2} = \sqrt{(-6)^2 + (-2)^2} = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10} \text{ units} \][/tex]
Now, check which of these distances for points [tex]\( H1, H2, H3, H4 \)[/tex] satisfies the remaining fencing condition:
[tex]\[ 4 \leq \text{remaining fencing} \][/tex]
After checking the distances, it turns out that:
[tex]\[ GH1 = 4 \text{ units} \][/tex]
Thus, point [tex]\( H \)[/tex] could be placed at [tex]\( (-3,1) \)[/tex] so that Alex does not have to buy more fencing. Therefore, the correct answer is:
[tex]\[ \boxed{(-3, 1)} \][/tex]
First, calculate the distances between the given points [tex]\( E \)[/tex], [tex]\( F \)[/tex], and [tex]\( G \)[/tex]:
1. Distance [tex]\( EF \)[/tex] between [tex]\( E(0, 5) \)[/tex] and [tex]\( F(5, 5) \)[/tex]:
[tex]\[ EF = \sqrt{(5 - 0)^2 + (5 - 5)^2} = \sqrt{5^2 + 0^2} = \sqrt{25} = 5 \text{ units} \][/tex]
2. Distance [tex]\( FG \)[/tex] between [tex]\( F(5, 5) \)[/tex] and [tex]\( G(1, 1) \)[/tex]:
[tex]\[ FG = \sqrt{(1 - 5)^2 + (1 - 5)^2} = \sqrt{(-4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2} \text{ units} \][/tex]
3. Distance [tex]\( GE \)[/tex] between [tex]\( G(1, 1) \)[/tex] and [tex]\( E(0, 5) \)[/tex]:
[tex]\[ GE = \sqrt{(0 - 1)^2 + (5 - 1)^2} = \sqrt{(-1)^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \text{ units} \][/tex]
Next, calculate the total fencing used by summing these distances:
[tex]\[ \text{Total fencing used} = EF + FG + GE = 5 + 4\sqrt{2} + \sqrt{17} \][/tex]
Given that Alex has 20 units of fencing, the remaining fencing available for the fourth side [tex]\( GH \)[/tex] is:
[tex]\[ \text{Remaining fencing} = 20 - (5 + 4\sqrt{2} + \sqrt{17}) \][/tex]
To decide where point [tex]\( H \)[/tex] could be placed, we evaluate the distances from point [tex]\( G \)[/tex] to each of the four potential points for [tex]\( H \)[/tex]:
1. Distance [tex]\( GH1 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H1 (-3, 1) \)[/tex]:
[tex]\[ GH1 = \sqrt{(-3 - 1)^2 + (1 - 1)^2} = \sqrt{(-4)^2 + 0^2} = \sqrt{16} = 4 \text{ units} \][/tex]
2. Distance [tex]\( GH2 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H2 (-3, -1) \)[/tex]:
[tex]\[ GH2 = \sqrt{(-3 - 1)^2 + (-1 - 1)^2} = \sqrt{(-4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} \text{ units} \][/tex]
3. Distance [tex]\( GH3 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H3 (-5, 1) \)[/tex]:
[tex]\[ GH3 = \sqrt{(-5 - 1)^2 + (1 - 1)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \text{ units} \][/tex]
4. Distance [tex]\( GH4 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H4 (-5, -1) \)[/tex]:
[tex]\[ GH4 = \sqrt{(-5 - 1)^2 + (-1 - 1)^2} = \sqrt{(-6)^2 + (-2)^2} = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10} \text{ units} \][/tex]
Now, check which of these distances for points [tex]\( H1, H2, H3, H4 \)[/tex] satisfies the remaining fencing condition:
[tex]\[ 4 \leq \text{remaining fencing} \][/tex]
After checking the distances, it turns out that:
[tex]\[ GH1 = 4 \text{ units} \][/tex]
Thus, point [tex]\( H \)[/tex] could be placed at [tex]\( (-3,1) \)[/tex] so that Alex does not have to buy more fencing. Therefore, the correct answer is:
[tex]\[ \boxed{(-3, 1)} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.