Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's determine the correct position for point [tex]\( H \)[/tex] that ensures Alex uses no more than 20 units of fencing by considering the given points and the available fencing.
First, calculate the distances between the given points [tex]\( E \)[/tex], [tex]\( F \)[/tex], and [tex]\( G \)[/tex]:
1. Distance [tex]\( EF \)[/tex] between [tex]\( E(0, 5) \)[/tex] and [tex]\( F(5, 5) \)[/tex]:
[tex]\[ EF = \sqrt{(5 - 0)^2 + (5 - 5)^2} = \sqrt{5^2 + 0^2} = \sqrt{25} = 5 \text{ units} \][/tex]
2. Distance [tex]\( FG \)[/tex] between [tex]\( F(5, 5) \)[/tex] and [tex]\( G(1, 1) \)[/tex]:
[tex]\[ FG = \sqrt{(1 - 5)^2 + (1 - 5)^2} = \sqrt{(-4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2} \text{ units} \][/tex]
3. Distance [tex]\( GE \)[/tex] between [tex]\( G(1, 1) \)[/tex] and [tex]\( E(0, 5) \)[/tex]:
[tex]\[ GE = \sqrt{(0 - 1)^2 + (5 - 1)^2} = \sqrt{(-1)^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \text{ units} \][/tex]
Next, calculate the total fencing used by summing these distances:
[tex]\[ \text{Total fencing used} = EF + FG + GE = 5 + 4\sqrt{2} + \sqrt{17} \][/tex]
Given that Alex has 20 units of fencing, the remaining fencing available for the fourth side [tex]\( GH \)[/tex] is:
[tex]\[ \text{Remaining fencing} = 20 - (5 + 4\sqrt{2} + \sqrt{17}) \][/tex]
To decide where point [tex]\( H \)[/tex] could be placed, we evaluate the distances from point [tex]\( G \)[/tex] to each of the four potential points for [tex]\( H \)[/tex]:
1. Distance [tex]\( GH1 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H1 (-3, 1) \)[/tex]:
[tex]\[ GH1 = \sqrt{(-3 - 1)^2 + (1 - 1)^2} = \sqrt{(-4)^2 + 0^2} = \sqrt{16} = 4 \text{ units} \][/tex]
2. Distance [tex]\( GH2 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H2 (-3, -1) \)[/tex]:
[tex]\[ GH2 = \sqrt{(-3 - 1)^2 + (-1 - 1)^2} = \sqrt{(-4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} \text{ units} \][/tex]
3. Distance [tex]\( GH3 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H3 (-5, 1) \)[/tex]:
[tex]\[ GH3 = \sqrt{(-5 - 1)^2 + (1 - 1)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \text{ units} \][/tex]
4. Distance [tex]\( GH4 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H4 (-5, -1) \)[/tex]:
[tex]\[ GH4 = \sqrt{(-5 - 1)^2 + (-1 - 1)^2} = \sqrt{(-6)^2 + (-2)^2} = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10} \text{ units} \][/tex]
Now, check which of these distances for points [tex]\( H1, H2, H3, H4 \)[/tex] satisfies the remaining fencing condition:
[tex]\[ 4 \leq \text{remaining fencing} \][/tex]
After checking the distances, it turns out that:
[tex]\[ GH1 = 4 \text{ units} \][/tex]
Thus, point [tex]\( H \)[/tex] could be placed at [tex]\( (-3,1) \)[/tex] so that Alex does not have to buy more fencing. Therefore, the correct answer is:
[tex]\[ \boxed{(-3, 1)} \][/tex]
First, calculate the distances between the given points [tex]\( E \)[/tex], [tex]\( F \)[/tex], and [tex]\( G \)[/tex]:
1. Distance [tex]\( EF \)[/tex] between [tex]\( E(0, 5) \)[/tex] and [tex]\( F(5, 5) \)[/tex]:
[tex]\[ EF = \sqrt{(5 - 0)^2 + (5 - 5)^2} = \sqrt{5^2 + 0^2} = \sqrt{25} = 5 \text{ units} \][/tex]
2. Distance [tex]\( FG \)[/tex] between [tex]\( F(5, 5) \)[/tex] and [tex]\( G(1, 1) \)[/tex]:
[tex]\[ FG = \sqrt{(1 - 5)^2 + (1 - 5)^2} = \sqrt{(-4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2} \text{ units} \][/tex]
3. Distance [tex]\( GE \)[/tex] between [tex]\( G(1, 1) \)[/tex] and [tex]\( E(0, 5) \)[/tex]:
[tex]\[ GE = \sqrt{(0 - 1)^2 + (5 - 1)^2} = \sqrt{(-1)^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \text{ units} \][/tex]
Next, calculate the total fencing used by summing these distances:
[tex]\[ \text{Total fencing used} = EF + FG + GE = 5 + 4\sqrt{2} + \sqrt{17} \][/tex]
Given that Alex has 20 units of fencing, the remaining fencing available for the fourth side [tex]\( GH \)[/tex] is:
[tex]\[ \text{Remaining fencing} = 20 - (5 + 4\sqrt{2} + \sqrt{17}) \][/tex]
To decide where point [tex]\( H \)[/tex] could be placed, we evaluate the distances from point [tex]\( G \)[/tex] to each of the four potential points for [tex]\( H \)[/tex]:
1. Distance [tex]\( GH1 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H1 (-3, 1) \)[/tex]:
[tex]\[ GH1 = \sqrt{(-3 - 1)^2 + (1 - 1)^2} = \sqrt{(-4)^2 + 0^2} = \sqrt{16} = 4 \text{ units} \][/tex]
2. Distance [tex]\( GH2 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H2 (-3, -1) \)[/tex]:
[tex]\[ GH2 = \sqrt{(-3 - 1)^2 + (-1 - 1)^2} = \sqrt{(-4)^2 + (-2)^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5} \text{ units} \][/tex]
3. Distance [tex]\( GH3 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H3 (-5, 1) \)[/tex]:
[tex]\[ GH3 = \sqrt{(-5 - 1)^2 + (1 - 1)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \text{ units} \][/tex]
4. Distance [tex]\( GH4 \)[/tex] between [tex]\( G (1, 1) \)[/tex] and [tex]\( H4 (-5, -1) \)[/tex]:
[tex]\[ GH4 = \sqrt{(-5 - 1)^2 + (-1 - 1)^2} = \sqrt{(-6)^2 + (-2)^2} = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10} \text{ units} \][/tex]
Now, check which of these distances for points [tex]\( H1, H2, H3, H4 \)[/tex] satisfies the remaining fencing condition:
[tex]\[ 4 \leq \text{remaining fencing} \][/tex]
After checking the distances, it turns out that:
[tex]\[ GH1 = 4 \text{ units} \][/tex]
Thus, point [tex]\( H \)[/tex] could be placed at [tex]\( (-3,1) \)[/tex] so that Alex does not have to buy more fencing. Therefore, the correct answer is:
[tex]\[ \boxed{(-3, 1)} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.