Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To address Kavita's hypothesis test, we need to follow these steps:
1. Define the hypotheses:
- Null hypothesis ([tex]\(H_0\)[/tex]): The average receipt for the branch is the same as the chain's average: [tex]\( \mu = 72 \)[/tex].
- Alternative hypothesis ([tex]\(H_a\)[/tex]): The average receipt for the branch is less than the chain's average: [tex]\( \mu < 72 \)[/tex].
2. Identify the significance level:
- Given in the problem is a significance level ([tex]\( \alpha \)[/tex]) of [tex]\(0.05\)[/tex] or [tex]\(5\%\)[/tex].
3. Calculate the test statistic (z-score):
- Using the sample size ([tex]\( n = 40 \)[/tex]), the chain's mean ([tex]\( \mu = 72 \)[/tex]), the branch's mean ([tex]\( \bar{x} = 67 \)[/tex]), and the chain's standard deviation ([tex]\( \sigma = 11 \)[/tex]), we use the formula for the z-score:
[tex]\[ z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \][/tex]
- Plugging in the numbers:
[tex]\[ z = \frac{67 - 72}{\frac{11}{\sqrt{40}}} = \frac{-5}{\frac{11}{6.3246}} \approx -2.875 \][/tex]
Thus, the z-score is approximately [tex]\(-2.875\)[/tex].
4. Determine the critical z-value:
- For a one-tailed test at [tex]\( 0.05 \)[/tex] significance level, the critical z-value is [tex]\(-1.65\)[/tex] (negative because it is a lower-tail test).
5. Compare the test statistic to the critical value:
- The calculated z-score ([tex]\(-2.875\)[/tex]) is less than the critical z-value ([tex]\(-1.65\)[/tex]).
6. Make a decision:
- Since [tex]\(-2.875 < -1.65\)[/tex], we reject the null hypothesis ([tex]\(H_0\)[/tex]).
Thus, the test statistic falls into the rejection region, indicating that there is sufficient evidence to reject the null hypothesis in favor of the alternative hypothesis. The result is significant at the [tex]\(5\%\)[/tex] level, suggesting that the average receipt at the branch is indeed less than the chain's average.
Therefore, the correct choice is:
- She should reject [tex]\( H _0: \mu=72 \)[/tex] and accept [tex]\( H _{ a }: \mu<72 \)[/tex].
1. Define the hypotheses:
- Null hypothesis ([tex]\(H_0\)[/tex]): The average receipt for the branch is the same as the chain's average: [tex]\( \mu = 72 \)[/tex].
- Alternative hypothesis ([tex]\(H_a\)[/tex]): The average receipt for the branch is less than the chain's average: [tex]\( \mu < 72 \)[/tex].
2. Identify the significance level:
- Given in the problem is a significance level ([tex]\( \alpha \)[/tex]) of [tex]\(0.05\)[/tex] or [tex]\(5\%\)[/tex].
3. Calculate the test statistic (z-score):
- Using the sample size ([tex]\( n = 40 \)[/tex]), the chain's mean ([tex]\( \mu = 72 \)[/tex]), the branch's mean ([tex]\( \bar{x} = 67 \)[/tex]), and the chain's standard deviation ([tex]\( \sigma = 11 \)[/tex]), we use the formula for the z-score:
[tex]\[ z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \][/tex]
- Plugging in the numbers:
[tex]\[ z = \frac{67 - 72}{\frac{11}{\sqrt{40}}} = \frac{-5}{\frac{11}{6.3246}} \approx -2.875 \][/tex]
Thus, the z-score is approximately [tex]\(-2.875\)[/tex].
4. Determine the critical z-value:
- For a one-tailed test at [tex]\( 0.05 \)[/tex] significance level, the critical z-value is [tex]\(-1.65\)[/tex] (negative because it is a lower-tail test).
5. Compare the test statistic to the critical value:
- The calculated z-score ([tex]\(-2.875\)[/tex]) is less than the critical z-value ([tex]\(-1.65\)[/tex]).
6. Make a decision:
- Since [tex]\(-2.875 < -1.65\)[/tex], we reject the null hypothesis ([tex]\(H_0\)[/tex]).
Thus, the test statistic falls into the rejection region, indicating that there is sufficient evidence to reject the null hypothesis in favor of the alternative hypothesis. The result is significant at the [tex]\(5\%\)[/tex] level, suggesting that the average receipt at the branch is indeed less than the chain's average.
Therefore, the correct choice is:
- She should reject [tex]\( H _0: \mu=72 \)[/tex] and accept [tex]\( H _{ a }: \mu<72 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.