Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's break down the solution step-by-step for each part of the problem.
### Part A: Factoring the equations
1. Equation: [tex]\( x^2 - 36 \)[/tex]
This is a difference of squares. The formula for the difference of squares is [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex]. Here, [tex]\( a = x \)[/tex] and [tex]\( b = 6 \)[/tex], so:
[tex]\[ x^2 - 36 = (x - 6)(x + 6) \][/tex]
2. Equation: [tex]\( 9x^2 - 1 \)[/tex]
This is also a difference of squares where [tex]\( a = 3x \)[/tex] and [tex]\( b = 1 \)[/tex]. Applying the formula:
[tex]\[ 9x^2 - 1 = (3x - 1)(3x + 1) \][/tex]
3. Equation: [tex]\( 4x^2 - 16 \)[/tex]
First, notice that 4 is a common factor in both terms:
[tex]\[ 4x^2 - 16 = 4(x^2 - 4) \][/tex]
Then [tex]\( x^2 - 4 \)[/tex] is a difference of squares where [tex]\( a = x \)[/tex] and [tex]\( b = 2 \)[/tex]:
[tex]\[ x^2 - 4 = (x - 2)(x + 2) \][/tex]
Therefore:
[tex]\[ 4x^2 - 16 = 4(x - 2)(x + 2) \][/tex]
Thus, the factored forms of the equations are:
- [tex]\( x^2 - 36 \)[/tex] factors into [tex]\( (x-6)(x+6) \)[/tex].
- [tex]\( 9x^2 - 1 \)[/tex] factors into [tex]\( (3x-1)(3x+1) \)[/tex].
- [tex]\( 4x^2 - 16 \)[/tex] factors into [tex]\( 4(x-2)(x+2) \)[/tex].
### Part B: Non-equivalent Factored Forms
All the provided equations were factorable using the difference of squares method. There are no binomials in part A that did not have an equivalent factored form.
### Part C: Products using Properties of Complex Numbers
The products can be derived by simply expanding the factored forms back:
1. Product of [tex]\( (x - 6)(x + 6) \)[/tex]:
[tex]\[ (x - 6)(x + 6) = x^2 - 36 \][/tex]
2. Product of [tex]\( (3x - 1)(3x + 1) \)[/tex]:
[tex]\[ (3x - 1)(3x + 1) = 9x^2 - 1 \][/tex]
3. Product of [tex]\( 4(x - 2)(x + 2) \)[/tex]:
[tex]\[ 4(x - 2)(x + 2) = 4(x^2 - 4) = 4x^2 - 16 \][/tex]
Thus, the products of each expression, reaffirming the given factored forms, are the original expressions:
- [tex]\( (x-6)(x+6) = x^2 - 36 \)[/tex]
- [tex]\( (3x-1)(3x+1) = 9x^2 - 1 \)[/tex]
- [tex]\( 4(x-2)(x+2) = 4x^2 - 16 \)[/tex]
These steps confirm the accuracy and correctness of the original information, ensuring that the factored forms are appropriate and that all of the provided binomials are factorable.
### Part A: Factoring the equations
1. Equation: [tex]\( x^2 - 36 \)[/tex]
This is a difference of squares. The formula for the difference of squares is [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex]. Here, [tex]\( a = x \)[/tex] and [tex]\( b = 6 \)[/tex], so:
[tex]\[ x^2 - 36 = (x - 6)(x + 6) \][/tex]
2. Equation: [tex]\( 9x^2 - 1 \)[/tex]
This is also a difference of squares where [tex]\( a = 3x \)[/tex] and [tex]\( b = 1 \)[/tex]. Applying the formula:
[tex]\[ 9x^2 - 1 = (3x - 1)(3x + 1) \][/tex]
3. Equation: [tex]\( 4x^2 - 16 \)[/tex]
First, notice that 4 is a common factor in both terms:
[tex]\[ 4x^2 - 16 = 4(x^2 - 4) \][/tex]
Then [tex]\( x^2 - 4 \)[/tex] is a difference of squares where [tex]\( a = x \)[/tex] and [tex]\( b = 2 \)[/tex]:
[tex]\[ x^2 - 4 = (x - 2)(x + 2) \][/tex]
Therefore:
[tex]\[ 4x^2 - 16 = 4(x - 2)(x + 2) \][/tex]
Thus, the factored forms of the equations are:
- [tex]\( x^2 - 36 \)[/tex] factors into [tex]\( (x-6)(x+6) \)[/tex].
- [tex]\( 9x^2 - 1 \)[/tex] factors into [tex]\( (3x-1)(3x+1) \)[/tex].
- [tex]\( 4x^2 - 16 \)[/tex] factors into [tex]\( 4(x-2)(x+2) \)[/tex].
### Part B: Non-equivalent Factored Forms
All the provided equations were factorable using the difference of squares method. There are no binomials in part A that did not have an equivalent factored form.
### Part C: Products using Properties of Complex Numbers
The products can be derived by simply expanding the factored forms back:
1. Product of [tex]\( (x - 6)(x + 6) \)[/tex]:
[tex]\[ (x - 6)(x + 6) = x^2 - 36 \][/tex]
2. Product of [tex]\( (3x - 1)(3x + 1) \)[/tex]:
[tex]\[ (3x - 1)(3x + 1) = 9x^2 - 1 \][/tex]
3. Product of [tex]\( 4(x - 2)(x + 2) \)[/tex]:
[tex]\[ 4(x - 2)(x + 2) = 4(x^2 - 4) = 4x^2 - 16 \][/tex]
Thus, the products of each expression, reaffirming the given factored forms, are the original expressions:
- [tex]\( (x-6)(x+6) = x^2 - 36 \)[/tex]
- [tex]\( (3x-1)(3x+1) = 9x^2 - 1 \)[/tex]
- [tex]\( 4(x-2)(x+2) = 4x^2 - 16 \)[/tex]
These steps confirm the accuracy and correctness of the original information, ensuring that the factored forms are appropriate and that all of the provided binomials are factorable.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.