Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure! Let's solve this step-by-step.
1. Identify the Given Data:
- Center of the circle: [tex]\((h, k) = (2, 4)\)[/tex]
- Point on the circle: [tex]\((x_1, y_1) = (8, 6)\)[/tex]
2. Calculate the Radius:
- The radius of the circle is the distance between the center [tex]\((2, 4)\)[/tex] and the point [tex]\((8, 6)\)[/tex].
- The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
- Plugging in the points [tex]\((2, 4)\)[/tex] and [tex]\((8, 6)\)[/tex]:
[tex]\[ \text{Radius} = \sqrt{(8 - 2)^2 + (6 - 4)^2} \][/tex]
[tex]\[ \text{Radius} = \sqrt{6^2 + 2^2} \][/tex]
[tex]\[ \text{Radius} = \sqrt{36 + 4} = \sqrt{40} \approx 6.324555320336759 \][/tex]
3. Square the Radius:
- The standard equation of a circle involves the radius squared.
- Therefore, we need to square the radius value we just calculated:
[tex]\[ \text{Radius}^2 = (\sqrt{40})^2 \][/tex]
[tex]\[ \text{Radius}^2 = 40.00000000000001 \][/tex]
4. Write the Standard Equation of the Circle:
- The standard form for the equation of a circle centered at [tex]\((h, k)\)[/tex] with radius [tex]\(r\)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
- With [tex]\(h = 2\)[/tex], [tex]\(k = 4\)[/tex], and [tex]\(r^2 = 40.00000000000001\)[/tex]:
[tex]\[ (x - 2)^2 + (y - 4)^2 = 40.00000000000001 \][/tex]
5. Write the Final Answer:
- The standard equation of the circle with center [tex]\((2, 4)\)[/tex] passing through the point [tex]\((8, 6)\)[/tex] is:
[tex]\[ (x - 2)^2 + (y - 4)^2 = 40.00000000000001 \][/tex]
This is the required equation of the circle.
1. Identify the Given Data:
- Center of the circle: [tex]\((h, k) = (2, 4)\)[/tex]
- Point on the circle: [tex]\((x_1, y_1) = (8, 6)\)[/tex]
2. Calculate the Radius:
- The radius of the circle is the distance between the center [tex]\((2, 4)\)[/tex] and the point [tex]\((8, 6)\)[/tex].
- The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
- Plugging in the points [tex]\((2, 4)\)[/tex] and [tex]\((8, 6)\)[/tex]:
[tex]\[ \text{Radius} = \sqrt{(8 - 2)^2 + (6 - 4)^2} \][/tex]
[tex]\[ \text{Radius} = \sqrt{6^2 + 2^2} \][/tex]
[tex]\[ \text{Radius} = \sqrt{36 + 4} = \sqrt{40} \approx 6.324555320336759 \][/tex]
3. Square the Radius:
- The standard equation of a circle involves the radius squared.
- Therefore, we need to square the radius value we just calculated:
[tex]\[ \text{Radius}^2 = (\sqrt{40})^2 \][/tex]
[tex]\[ \text{Radius}^2 = 40.00000000000001 \][/tex]
4. Write the Standard Equation of the Circle:
- The standard form for the equation of a circle centered at [tex]\((h, k)\)[/tex] with radius [tex]\(r\)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
- With [tex]\(h = 2\)[/tex], [tex]\(k = 4\)[/tex], and [tex]\(r^2 = 40.00000000000001\)[/tex]:
[tex]\[ (x - 2)^2 + (y - 4)^2 = 40.00000000000001 \][/tex]
5. Write the Final Answer:
- The standard equation of the circle with center [tex]\((2, 4)\)[/tex] passing through the point [tex]\((8, 6)\)[/tex] is:
[tex]\[ (x - 2)^2 + (y - 4)^2 = 40.00000000000001 \][/tex]
This is the required equation of the circle.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.