Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the probability that a randomly selected student has a score between 350 and 550 on a standardized test normally distributed with a mean of 500 and a standard deviation of 110, follow these steps:
1. Calculate the z-scores:
- The z-score represents the number of standard deviations a value is away from the mean.
- The formula for calculating the z-score is [tex]\( z = \frac{(X - \mu)}{\sigma} \)[/tex] where [tex]\( \mu \)[/tex] is the mean and [tex]\( \sigma \)[/tex] is the standard deviation.
For the lower score (350):
[tex]\[ z_{\text{lower}} = \frac{(350 - 500)}{110} = \frac{-150}{110} \approx -1.364 \][/tex]
For the upper score (550):
[tex]\[ z_{\text{upper}} = \frac{(550 - 500)}{110} = \frac{50}{110} \approx 0.455 \][/tex]
2. Use the z-table to find the corresponding probabilities:
- The z-table provides the cumulative probability for each z-score from the mean to the value.
- Approximate the given z-scores using the closest z-values from the table.
For [tex]\( z_{\text{lower}} \approx -1.364 \)[/tex], the closest given z-score is 0.00:
[tex]\[ P(Z < 0.00) = 0.5000 \][/tex]
For [tex]\( z_{\text{upper}} \approx 0.455 \)[/tex], the closest given z-score is 0.45:
[tex]\[ P(Z < 0.45) = 0.6736 \][/tex]
3. Calculate the probability between the z-scores:
- To find the probability that the score falls between the two z-scores, subtract the cumulative probability of the lower z-score from the cumulative probability of the upper z-score.
[tex]\[ P(350 < X < 550) = P(Z < 0.45) - P(Z < 0.00) \][/tex]
Substitute the values from the z-table:
[tex]\[ P(350 < X < 550) = 0.6736 - 0.5000 = 0.1736 \][/tex]
Therefore, the probability that a randomly selected student scores between 350 and 550 on this standardized test is approximately [tex]\( 0.1736 \)[/tex], or 17.36%.
1. Calculate the z-scores:
- The z-score represents the number of standard deviations a value is away from the mean.
- The formula for calculating the z-score is [tex]\( z = \frac{(X - \mu)}{\sigma} \)[/tex] where [tex]\( \mu \)[/tex] is the mean and [tex]\( \sigma \)[/tex] is the standard deviation.
For the lower score (350):
[tex]\[ z_{\text{lower}} = \frac{(350 - 500)}{110} = \frac{-150}{110} \approx -1.364 \][/tex]
For the upper score (550):
[tex]\[ z_{\text{upper}} = \frac{(550 - 500)}{110} = \frac{50}{110} \approx 0.455 \][/tex]
2. Use the z-table to find the corresponding probabilities:
- The z-table provides the cumulative probability for each z-score from the mean to the value.
- Approximate the given z-scores using the closest z-values from the table.
For [tex]\( z_{\text{lower}} \approx -1.364 \)[/tex], the closest given z-score is 0.00:
[tex]\[ P(Z < 0.00) = 0.5000 \][/tex]
For [tex]\( z_{\text{upper}} \approx 0.455 \)[/tex], the closest given z-score is 0.45:
[tex]\[ P(Z < 0.45) = 0.6736 \][/tex]
3. Calculate the probability between the z-scores:
- To find the probability that the score falls between the two z-scores, subtract the cumulative probability of the lower z-score from the cumulative probability of the upper z-score.
[tex]\[ P(350 < X < 550) = P(Z < 0.45) - P(Z < 0.00) \][/tex]
Substitute the values from the z-table:
[tex]\[ P(350 < X < 550) = 0.6736 - 0.5000 = 0.1736 \][/tex]
Therefore, the probability that a randomly selected student scores between 350 and 550 on this standardized test is approximately [tex]\( 0.1736 \)[/tex], or 17.36%.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.