Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the probability that a randomly selected student has a score between 350 and 550 on a standardized test normally distributed with a mean of 500 and a standard deviation of 110, follow these steps:
1. Calculate the z-scores:
- The z-score represents the number of standard deviations a value is away from the mean.
- The formula for calculating the z-score is [tex]\( z = \frac{(X - \mu)}{\sigma} \)[/tex] where [tex]\( \mu \)[/tex] is the mean and [tex]\( \sigma \)[/tex] is the standard deviation.
For the lower score (350):
[tex]\[ z_{\text{lower}} = \frac{(350 - 500)}{110} = \frac{-150}{110} \approx -1.364 \][/tex]
For the upper score (550):
[tex]\[ z_{\text{upper}} = \frac{(550 - 500)}{110} = \frac{50}{110} \approx 0.455 \][/tex]
2. Use the z-table to find the corresponding probabilities:
- The z-table provides the cumulative probability for each z-score from the mean to the value.
- Approximate the given z-scores using the closest z-values from the table.
For [tex]\( z_{\text{lower}} \approx -1.364 \)[/tex], the closest given z-score is 0.00:
[tex]\[ P(Z < 0.00) = 0.5000 \][/tex]
For [tex]\( z_{\text{upper}} \approx 0.455 \)[/tex], the closest given z-score is 0.45:
[tex]\[ P(Z < 0.45) = 0.6736 \][/tex]
3. Calculate the probability between the z-scores:
- To find the probability that the score falls between the two z-scores, subtract the cumulative probability of the lower z-score from the cumulative probability of the upper z-score.
[tex]\[ P(350 < X < 550) = P(Z < 0.45) - P(Z < 0.00) \][/tex]
Substitute the values from the z-table:
[tex]\[ P(350 < X < 550) = 0.6736 - 0.5000 = 0.1736 \][/tex]
Therefore, the probability that a randomly selected student scores between 350 and 550 on this standardized test is approximately [tex]\( 0.1736 \)[/tex], or 17.36%.
1. Calculate the z-scores:
- The z-score represents the number of standard deviations a value is away from the mean.
- The formula for calculating the z-score is [tex]\( z = \frac{(X - \mu)}{\sigma} \)[/tex] where [tex]\( \mu \)[/tex] is the mean and [tex]\( \sigma \)[/tex] is the standard deviation.
For the lower score (350):
[tex]\[ z_{\text{lower}} = \frac{(350 - 500)}{110} = \frac{-150}{110} \approx -1.364 \][/tex]
For the upper score (550):
[tex]\[ z_{\text{upper}} = \frac{(550 - 500)}{110} = \frac{50}{110} \approx 0.455 \][/tex]
2. Use the z-table to find the corresponding probabilities:
- The z-table provides the cumulative probability for each z-score from the mean to the value.
- Approximate the given z-scores using the closest z-values from the table.
For [tex]\( z_{\text{lower}} \approx -1.364 \)[/tex], the closest given z-score is 0.00:
[tex]\[ P(Z < 0.00) = 0.5000 \][/tex]
For [tex]\( z_{\text{upper}} \approx 0.455 \)[/tex], the closest given z-score is 0.45:
[tex]\[ P(Z < 0.45) = 0.6736 \][/tex]
3. Calculate the probability between the z-scores:
- To find the probability that the score falls between the two z-scores, subtract the cumulative probability of the lower z-score from the cumulative probability of the upper z-score.
[tex]\[ P(350 < X < 550) = P(Z < 0.45) - P(Z < 0.00) \][/tex]
Substitute the values from the z-table:
[tex]\[ P(350 < X < 550) = 0.6736 - 0.5000 = 0.1736 \][/tex]
Therefore, the probability that a randomly selected student scores between 350 and 550 on this standardized test is approximately [tex]\( 0.1736 \)[/tex], or 17.36%.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.