Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Write the standard equation of a circle with center [tex](-4, -1)[/tex] and radius 12 units.

Sagot :

Sure, let's write the standard equation of a circle with the given center [tex]\((-4, -1)\)[/tex] and radius 12 units.

The standard form of the equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\(r\)[/tex] is given by:

[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

In this case, the center [tex]\((h, k)\)[/tex] is [tex]\((-4, -1)\)[/tex], and the radius [tex]\(r\)[/tex] is 12 units. Substituting these values into the standard form equation, we get:

[tex]\[ (x - (-4))^2 + (y - (-1))^2 = 12^2 \][/tex]

Simplifying the equation:

[tex]\[ (x + 4)^2 + (y + 1)^2 = 144 \][/tex]

So, the standard equation of the circle with center [tex]\((-4, -1)\)[/tex] and radius 12 units is:

[tex]\[ (x + 4)^2 + (y + 1)^2 = 144 \][/tex]