At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

If you horizontally shift the square root parent function, [tex]F(x)=\sqrt{x}[/tex], right eight units, what is the equation of the new function?

A. [tex]G(x)=\sqrt{x+8}[/tex]

B. [tex]G(x)=\sqrt{x}+8[/tex]

C. [tex]G(x)=\sqrt{x}-8[/tex]

D. [tex]G(x)=\sqrt{x-8}[/tex]


Sagot :

To horizontally shift the square root parent function [tex]\( F(x) = \sqrt{x} \)[/tex] to the right by eight units, we need to adjust the input variable [tex]\( x \)[/tex] in the function.

Here is the step-by-step explanation:

1. Understand Horizontal Shifts:
Horizontal shifts are transformations that move the graph of a function left or right. When shifting to the right, we subtract a constant from the input variable [tex]\( x \)[/tex]. Conversely, shifting to the left requires adding a constant to [tex]\( x \)[/tex].

2. Original Function:
The original function is [tex]\( F(x) = \sqrt{x} \)[/tex].

3. Applying the Shift:
To shift the function to the right by 8 units, we substitute [tex]\( x-8 \)[/tex] for [tex]\( x \)[/tex] in the original function. This means wherever we see [tex]\( x \)[/tex] in the function, we replace it with [tex]\( x-8 \)[/tex].

4. New Function:
By substituting [tex]\( x-8 \)[/tex] for [tex]\( x \)[/tex] in [tex]\( F(x) = \sqrt{x} \)[/tex], we get:
[tex]\[ G(x) = \sqrt{x - 8} \][/tex]

Therefore, the correct equation for the new function after shifting the original function right by eight units is [tex]\( G(x) = \sqrt{x - 8} \)[/tex].

Hence, the answer is:

D. [tex]\( G(x) = \sqrt{x - 8} \)[/tex]