Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).

A right triangle [tex]$ABC$[/tex] has complementary angles [tex]$A$[/tex] and [tex]$C$[/tex].

If [tex]$\sin (A) = \frac{24}{25}$[/tex], the value of [tex]$\cos (C) = \square$[/tex]

If [tex]$\cos (C) = \frac{20}{25}$[/tex], the value of [tex]$\sin (A) = \square$[/tex]


Sagot :

To solve for the values of [tex]\(\cos(C)\)[/tex] and [tex]\(\sin(A)\)[/tex] in a right triangle [tex]\(ABC\)[/tex] given the complementary angles [tex]\(A\)[/tex] and [tex]\(C\)[/tex]:

### Step-by-Step Solution:
1. Identify the Relationship Between Angles:
In any right triangle, the two acute angles are complementary, meaning [tex]\(\angle A + \angle C = 90^\circ\)[/tex].

2. Use the Complementary Angle Property:
For two complementary angles [tex]\(A\)[/tex] and [tex]\(C\)[/tex] in a right triangle, the sine of one angle is equal to the cosine of the other:
[tex]\[ \sin(A) = \cos(90^\circ - A) = \cos(C) \][/tex]

3. Given Value for [tex]\(\sin(A)\)[/tex]:
It is given that:
[tex]\[ \sin(A) = \frac{24}{25} \][/tex]

4. Determine [tex]\(\cos(C)\)[/tex]:
Using the complementary angle property mentioned above:
[tex]\[ \cos(C) = \sin(A) = \frac{24}{25} \][/tex]

Therefore, [tex]\(\cos(C) = 0.96\)[/tex].

5. Given Value for [tex]\(\cos(C)\)[/tex]:
Although there seems to be a typo in the question stating [tex]\(\cos(C) = \frac{20}{20}\)[/tex] (which simplifies to 1, but it should probably reference the correct complementary relationship):
We previously established that:
[tex]\[ \cos(C) = \frac{24}{25} \][/tex]

6. Reaffirm [tex]\(\sin(A)\)[/tex]:
Therefore, once again we see:
[tex]\[ \sin(A) = \frac{24}{25} \][/tex]

Which reaffirms that [tex]\(\sin(A) = 0.96\)[/tex].

### Final Answer:
If [tex]\(\sin(A) = \frac{24}{25}\)[/tex], then the value of [tex]\(\cos(C) = 0.96\)[/tex].

Additionally, confirming [tex]\(\cos(C)\)[/tex] correctly as [tex]\(\frac{24}{25}\)[/tex] (or 0.96), reaffirms that [tex]\(\sin(A)= 0.96\)[/tex].

So:
- If [tex]\(\sin(A) = \frac{24}{25}\)[/tex], the value of [tex]\(\cos(C)\)[/tex] is [tex]\(\boxed{0.96}\)[/tex].
- Given that [tex]\(\cos(C) = 0.96\)[/tex], the value of [tex]\(\sin(A)\)[/tex] is [tex]\(\boxed{0.96}\)[/tex].