Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve for the values of [tex]\(\cos(C)\)[/tex] and [tex]\(\sin(A)\)[/tex] in a right triangle [tex]\(ABC\)[/tex] given the complementary angles [tex]\(A\)[/tex] and [tex]\(C\)[/tex]:
### Step-by-Step Solution:
1. Identify the Relationship Between Angles:
In any right triangle, the two acute angles are complementary, meaning [tex]\(\angle A + \angle C = 90^\circ\)[/tex].
2. Use the Complementary Angle Property:
For two complementary angles [tex]\(A\)[/tex] and [tex]\(C\)[/tex] in a right triangle, the sine of one angle is equal to the cosine of the other:
[tex]\[ \sin(A) = \cos(90^\circ - A) = \cos(C) \][/tex]
3. Given Value for [tex]\(\sin(A)\)[/tex]:
It is given that:
[tex]\[ \sin(A) = \frac{24}{25} \][/tex]
4. Determine [tex]\(\cos(C)\)[/tex]:
Using the complementary angle property mentioned above:
[tex]\[ \cos(C) = \sin(A) = \frac{24}{25} \][/tex]
Therefore, [tex]\(\cos(C) = 0.96\)[/tex].
5. Given Value for [tex]\(\cos(C)\)[/tex]:
Although there seems to be a typo in the question stating [tex]\(\cos(C) = \frac{20}{20}\)[/tex] (which simplifies to 1, but it should probably reference the correct complementary relationship):
We previously established that:
[tex]\[ \cos(C) = \frac{24}{25} \][/tex]
6. Reaffirm [tex]\(\sin(A)\)[/tex]:
Therefore, once again we see:
[tex]\[ \sin(A) = \frac{24}{25} \][/tex]
Which reaffirms that [tex]\(\sin(A) = 0.96\)[/tex].
### Final Answer:
If [tex]\(\sin(A) = \frac{24}{25}\)[/tex], then the value of [tex]\(\cos(C) = 0.96\)[/tex].
Additionally, confirming [tex]\(\cos(C)\)[/tex] correctly as [tex]\(\frac{24}{25}\)[/tex] (or 0.96), reaffirms that [tex]\(\sin(A)= 0.96\)[/tex].
So:
- If [tex]\(\sin(A) = \frac{24}{25}\)[/tex], the value of [tex]\(\cos(C)\)[/tex] is [tex]\(\boxed{0.96}\)[/tex].
- Given that [tex]\(\cos(C) = 0.96\)[/tex], the value of [tex]\(\sin(A)\)[/tex] is [tex]\(\boxed{0.96}\)[/tex].
### Step-by-Step Solution:
1. Identify the Relationship Between Angles:
In any right triangle, the two acute angles are complementary, meaning [tex]\(\angle A + \angle C = 90^\circ\)[/tex].
2. Use the Complementary Angle Property:
For two complementary angles [tex]\(A\)[/tex] and [tex]\(C\)[/tex] in a right triangle, the sine of one angle is equal to the cosine of the other:
[tex]\[ \sin(A) = \cos(90^\circ - A) = \cos(C) \][/tex]
3. Given Value for [tex]\(\sin(A)\)[/tex]:
It is given that:
[tex]\[ \sin(A) = \frac{24}{25} \][/tex]
4. Determine [tex]\(\cos(C)\)[/tex]:
Using the complementary angle property mentioned above:
[tex]\[ \cos(C) = \sin(A) = \frac{24}{25} \][/tex]
Therefore, [tex]\(\cos(C) = 0.96\)[/tex].
5. Given Value for [tex]\(\cos(C)\)[/tex]:
Although there seems to be a typo in the question stating [tex]\(\cos(C) = \frac{20}{20}\)[/tex] (which simplifies to 1, but it should probably reference the correct complementary relationship):
We previously established that:
[tex]\[ \cos(C) = \frac{24}{25} \][/tex]
6. Reaffirm [tex]\(\sin(A)\)[/tex]:
Therefore, once again we see:
[tex]\[ \sin(A) = \frac{24}{25} \][/tex]
Which reaffirms that [tex]\(\sin(A) = 0.96\)[/tex].
### Final Answer:
If [tex]\(\sin(A) = \frac{24}{25}\)[/tex], then the value of [tex]\(\cos(C) = 0.96\)[/tex].
Additionally, confirming [tex]\(\cos(C)\)[/tex] correctly as [tex]\(\frac{24}{25}\)[/tex] (or 0.96), reaffirms that [tex]\(\sin(A)= 0.96\)[/tex].
So:
- If [tex]\(\sin(A) = \frac{24}{25}\)[/tex], the value of [tex]\(\cos(C)\)[/tex] is [tex]\(\boxed{0.96}\)[/tex].
- Given that [tex]\(\cos(C) = 0.96\)[/tex], the value of [tex]\(\sin(A)\)[/tex] is [tex]\(\boxed{0.96}\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.