Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the sum of the first 20 terms of the sequence [tex]\( a_n = 7n + 2 \)[/tex], follow these steps:
1. Identify the first term, [tex]\( a_1 \)[/tex]:
Substitute [tex]\( n = 1 \)[/tex] into the formula for the sequence.
[tex]\[ a_1 = 7(1) + 2 = 7 + 2 = 9 \][/tex]
2. Identify the 20th term, [tex]\( a_{20} \)[/tex]:
Substitute [tex]\( n = 20 \)[/tex] into the formula for the sequence.
[tex]\[ a_{20} = 7(20) + 2 = 140 + 2 = 142 \][/tex]
3. Use the formula for the sum of an arithmetic sequence:
The formula for the sum [tex]\( S_n \)[/tex] of the first [tex]\( n \)[/tex] terms of an arithmetic sequence is given by:
[tex]\[ S_n = \frac{n}{2} \times (a_1 + a_n) \][/tex]
Substitute [tex]\( n = 20 \)[/tex], [tex]\( a_1 = 9 \)[/tex], and [tex]\( a_{20} = 142 \)[/tex] into the formula.
[tex]\[ S_{20} = \frac{20}{2} \times (9 + 142) = 10 \times 151 = 1510 \][/tex]
Therefore, the sum of the first 20 terms of the sequence [tex]\( a_n = 7n + 2 \)[/tex] is [tex]\( 1510 \)[/tex].
1. Identify the first term, [tex]\( a_1 \)[/tex]:
Substitute [tex]\( n = 1 \)[/tex] into the formula for the sequence.
[tex]\[ a_1 = 7(1) + 2 = 7 + 2 = 9 \][/tex]
2. Identify the 20th term, [tex]\( a_{20} \)[/tex]:
Substitute [tex]\( n = 20 \)[/tex] into the formula for the sequence.
[tex]\[ a_{20} = 7(20) + 2 = 140 + 2 = 142 \][/tex]
3. Use the formula for the sum of an arithmetic sequence:
The formula for the sum [tex]\( S_n \)[/tex] of the first [tex]\( n \)[/tex] terms of an arithmetic sequence is given by:
[tex]\[ S_n = \frac{n}{2} \times (a_1 + a_n) \][/tex]
Substitute [tex]\( n = 20 \)[/tex], [tex]\( a_1 = 9 \)[/tex], and [tex]\( a_{20} = 142 \)[/tex] into the formula.
[tex]\[ S_{20} = \frac{20}{2} \times (9 + 142) = 10 \times 151 = 1510 \][/tex]
Therefore, the sum of the first 20 terms of the sequence [tex]\( a_n = 7n + 2 \)[/tex] is [tex]\( 1510 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.