Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's find the approximate value of [tex]\( P(-0.78 \leq z \leq 1.16) \)[/tex] using the provided portion of the standard normal table.
1. First, we need the cumulative probability corresponding to a [tex]\( z \)[/tex]-value of [tex]\( -0.78 \)[/tex]. However, the standard normal table provides the values for positive [tex]\( z \)[/tex]-values only. To find the probability for [tex]\( z = -0.78 \)[/tex], we use the symmetry of the normal distribution. For a negative [tex]\( z \)[/tex]-value, the cumulative probability is:
[tex]\[ P(Z \leq -0.78) = 1 - P(Z \leq 0.78) \][/tex]
From the provided table:
[tex]\[ P(Z \leq 0.78) = 0.7823 \][/tex]
Thus:
[tex]\[ P(Z \leq -0.78) = 1 - 0.7823 = 0.2177 \][/tex]
2. Next, we look up the cumulative probability for [tex]\( z = 1.16 \)[/tex] from the table:
[tex]\[ P(Z \leq 1.16) = 0.8770 \][/tex]
3. To find the probability that [tex]\( z \)[/tex] is between [tex]\( -0.78 \)[/tex] and [tex]\( 1.16 \)[/tex], we calculate:
[tex]\[ P(-0.78 \leq z \leq 1.16) = P(Z \leq 1.16) - P(Z \leq -0.78) \][/tex]
Substituting the values:
[tex]\[ P(-0.78 \leq z \leq 1.16) = 0.8770 - 0.2177 = 0.6593 \][/tex]
4. To express this probability as a percentage, we multiply by 100:
[tex]\[ P(-0.78 \leq z \leq 1.16) \times 100 = 65.93\% \][/tex]
Thus, the approximate value of [tex]\( P(-0.78 \leq z \leq 1.16) \)[/tex] is 65.93%. Out of the given options, the value closest to 65.93% is [tex]\( 66\% \)[/tex].
1. First, we need the cumulative probability corresponding to a [tex]\( z \)[/tex]-value of [tex]\( -0.78 \)[/tex]. However, the standard normal table provides the values for positive [tex]\( z \)[/tex]-values only. To find the probability for [tex]\( z = -0.78 \)[/tex], we use the symmetry of the normal distribution. For a negative [tex]\( z \)[/tex]-value, the cumulative probability is:
[tex]\[ P(Z \leq -0.78) = 1 - P(Z \leq 0.78) \][/tex]
From the provided table:
[tex]\[ P(Z \leq 0.78) = 0.7823 \][/tex]
Thus:
[tex]\[ P(Z \leq -0.78) = 1 - 0.7823 = 0.2177 \][/tex]
2. Next, we look up the cumulative probability for [tex]\( z = 1.16 \)[/tex] from the table:
[tex]\[ P(Z \leq 1.16) = 0.8770 \][/tex]
3. To find the probability that [tex]\( z \)[/tex] is between [tex]\( -0.78 \)[/tex] and [tex]\( 1.16 \)[/tex], we calculate:
[tex]\[ P(-0.78 \leq z \leq 1.16) = P(Z \leq 1.16) - P(Z \leq -0.78) \][/tex]
Substituting the values:
[tex]\[ P(-0.78 \leq z \leq 1.16) = 0.8770 - 0.2177 = 0.6593 \][/tex]
4. To express this probability as a percentage, we multiply by 100:
[tex]\[ P(-0.78 \leq z \leq 1.16) \times 100 = 65.93\% \][/tex]
Thus, the approximate value of [tex]\( P(-0.78 \leq z \leq 1.16) \)[/tex] is 65.93%. Out of the given options, the value closest to 65.93% is [tex]\( 66\% \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.