At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To prove that the diagonals of square PQRS are perpendicular bisectors of each other, we need to demonstrate two things:
1. The diagonals bisect each other.
2. The diagonals are perpendicular to each other.
Given:
- The slope of diagonal [tex]\(\overline{RP}\)[/tex] is [tex]\(7\)[/tex].
- The slope of diagonal [tex]\(\overline{SQ}\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex].
- The midpoint of both diagonals is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
Step 1: Proving the diagonals are perpendicular
To check if the diagonals are perpendicular, we need to determine if the product of their slopes is [tex]\(-1\)[/tex]. If two lines are perpendicular, the product of their slopes is exactly [tex]\(-1\)[/tex].
Calculate the product of the slopes:
[tex]\[ \text{Product of the slopes} = 7 \times -\frac{1}{7} = -1 \][/tex]
Since the product of the slopes is [tex]\(-1\)[/tex], the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are indeed perpendicular to each other.
Step 2: Proving the diagonals bisect each other
To confirm that the diagonals bisect each other, we need to verify that they share the same midpoint. Given the coordinates:
[tex]\[ \text{Midpoint of both diagonals} = \left(4 \frac{1}{2}, 5 \frac{1}{2}\right) \][/tex]
Since the midpoint of [tex]\(\overline{RP}\)[/tex] is the same as the midpoint of [tex]\(\overline{SQ}\)[/tex], this confirms that both diagonals bisect each other.
Conclusion:
From the given information, we have:
- The product of the slopes of [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] is [tex]\(-1\)[/tex], proving they are perpendicular.
- The midpoints of the diagonals are identical, confirming that the diagonals bisect each other.
Therefore, the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] of square PQRS are perpendicular bisectors of each other.
1. The diagonals bisect each other.
2. The diagonals are perpendicular to each other.
Given:
- The slope of diagonal [tex]\(\overline{RP}\)[/tex] is [tex]\(7\)[/tex].
- The slope of diagonal [tex]\(\overline{SQ}\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex].
- The midpoint of both diagonals is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
Step 1: Proving the diagonals are perpendicular
To check if the diagonals are perpendicular, we need to determine if the product of their slopes is [tex]\(-1\)[/tex]. If two lines are perpendicular, the product of their slopes is exactly [tex]\(-1\)[/tex].
Calculate the product of the slopes:
[tex]\[ \text{Product of the slopes} = 7 \times -\frac{1}{7} = -1 \][/tex]
Since the product of the slopes is [tex]\(-1\)[/tex], the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are indeed perpendicular to each other.
Step 2: Proving the diagonals bisect each other
To confirm that the diagonals bisect each other, we need to verify that they share the same midpoint. Given the coordinates:
[tex]\[ \text{Midpoint of both diagonals} = \left(4 \frac{1}{2}, 5 \frac{1}{2}\right) \][/tex]
Since the midpoint of [tex]\(\overline{RP}\)[/tex] is the same as the midpoint of [tex]\(\overline{SQ}\)[/tex], this confirms that both diagonals bisect each other.
Conclusion:
From the given information, we have:
- The product of the slopes of [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] is [tex]\(-1\)[/tex], proving they are perpendicular.
- The midpoints of the diagonals are identical, confirming that the diagonals bisect each other.
Therefore, the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] of square PQRS are perpendicular bisectors of each other.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.