Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Which statement proves that the diagonals of square PQRS are perpendicular bisectors of each other?

A. The length of [tex]$\overline{SP}$[/tex], [tex]$\overline{PQ}$[/tex], [tex]$\overline{RQ}$[/tex], and [tex]$\overline{SR}$[/tex] are each 5.

B. The slope of [tex]$\overline{SP}$[/tex] and [tex]$\overline{RQ}$[/tex] is [tex]$-\frac{4}{3}$[/tex], and the slope of [tex]$\overline{PQ}$[/tex] and [tex]$\overline{SR}$[/tex] is [tex]$\frac{3}{4}$[/tex].

C. The length of [tex]$\overline{SQ}$[/tex] and [tex]$\overline{RP}$[/tex] are both [tex]$\sqrt{50}$[/tex].

D. The midpoint of both diagonals is [tex]$\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)$[/tex], the slope of [tex]$\overline{RP}$[/tex] is 7, and the slope of [tex]$\overline{SQ}$[/tex] is [tex]$-\frac{1}{7}$[/tex].


Sagot :

To prove that the diagonals of square PQRS are perpendicular bisectors of each other, we need to demonstrate two things:
1. The diagonals bisect each other.
2. The diagonals are perpendicular to each other.

Given:
- The slope of diagonal [tex]\(\overline{RP}\)[/tex] is [tex]\(7\)[/tex].
- The slope of diagonal [tex]\(\overline{SQ}\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex].
- The midpoint of both diagonals is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].

Step 1: Proving the diagonals are perpendicular

To check if the diagonals are perpendicular, we need to determine if the product of their slopes is [tex]\(-1\)[/tex]. If two lines are perpendicular, the product of their slopes is exactly [tex]\(-1\)[/tex].

Calculate the product of the slopes:
[tex]\[ \text{Product of the slopes} = 7 \times -\frac{1}{7} = -1 \][/tex]

Since the product of the slopes is [tex]\(-1\)[/tex], the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are indeed perpendicular to each other.

Step 2: Proving the diagonals bisect each other

To confirm that the diagonals bisect each other, we need to verify that they share the same midpoint. Given the coordinates:
[tex]\[ \text{Midpoint of both diagonals} = \left(4 \frac{1}{2}, 5 \frac{1}{2}\right) \][/tex]

Since the midpoint of [tex]\(\overline{RP}\)[/tex] is the same as the midpoint of [tex]\(\overline{SQ}\)[/tex], this confirms that both diagonals bisect each other.

Conclusion:

From the given information, we have:
- The product of the slopes of [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] is [tex]\(-1\)[/tex], proving they are perpendicular.
- The midpoints of the diagonals are identical, confirming that the diagonals bisect each other.

Therefore, the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] of square PQRS are perpendicular bisectors of each other.