Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To identify the equation of the line that is parallel to the line [tex]\( y = -3x + 2 \)[/tex] and passes through the point [tex]\((-4, -5)\)[/tex], follow these steps:
1. Determine the slope of the given line:
The equation in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
For the line [tex]\( y = -3x + 2 \)[/tex], the slope [tex]\( m \)[/tex] is [tex]\(-3\)[/tex].
2. Understand the properties of parallel lines:
Parallel lines have the same slope. So, the line parallel to [tex]\( y = -3x + 2 \)[/tex] will also have a slope of [tex]\(-3\)[/tex].
3. Use the point-slope form of the equation of a line:
The point-slope form is given by [tex]\( y - y_1 = m(x - x_1) \)[/tex],
where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
Here, [tex]\((x_1, y_1) = (-4, -5)\)[/tex] and [tex]\( m = -3 \)[/tex].
4. Substitute the slope and the given point into the point-slope form:
[tex]\[ y - (-5) = -3 (x - (-4)) \][/tex]
Simplify the equation:
[tex]\[ y + 5 = -3 (x + 4) \][/tex]
5. Distribute the slope ( [tex]\(-3\)[/tex] ):
[tex]\[ y + 5 = -3x - 12 \][/tex]
6. Isolate [tex]\( y \)[/tex] to put the equation in the slope-intercept form ([tex]\( y = mx + b \)[/tex]):
[tex]\[ y = -3x - 12 - 5 \][/tex]
[tex]\[ y = -3x - 17 \][/tex]
Therefore, the equation of the line that is parallel to [tex]\( y = -3x + 2 \)[/tex] and passing through [tex]\((-4, -5)\)[/tex] is [tex]\( y = -3x - 17 \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{y = -3x - 17} \][/tex]
1. Determine the slope of the given line:
The equation in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
For the line [tex]\( y = -3x + 2 \)[/tex], the slope [tex]\( m \)[/tex] is [tex]\(-3\)[/tex].
2. Understand the properties of parallel lines:
Parallel lines have the same slope. So, the line parallel to [tex]\( y = -3x + 2 \)[/tex] will also have a slope of [tex]\(-3\)[/tex].
3. Use the point-slope form of the equation of a line:
The point-slope form is given by [tex]\( y - y_1 = m(x - x_1) \)[/tex],
where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
Here, [tex]\((x_1, y_1) = (-4, -5)\)[/tex] and [tex]\( m = -3 \)[/tex].
4. Substitute the slope and the given point into the point-slope form:
[tex]\[ y - (-5) = -3 (x - (-4)) \][/tex]
Simplify the equation:
[tex]\[ y + 5 = -3 (x + 4) \][/tex]
5. Distribute the slope ( [tex]\(-3\)[/tex] ):
[tex]\[ y + 5 = -3x - 12 \][/tex]
6. Isolate [tex]\( y \)[/tex] to put the equation in the slope-intercept form ([tex]\( y = mx + b \)[/tex]):
[tex]\[ y = -3x - 12 - 5 \][/tex]
[tex]\[ y = -3x - 17 \][/tex]
Therefore, the equation of the line that is parallel to [tex]\( y = -3x + 2 \)[/tex] and passing through [tex]\((-4, -5)\)[/tex] is [tex]\( y = -3x - 17 \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{y = -3x - 17} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.