Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine whether the equation [tex]\( x^2 + y^9 = 4 \)[/tex] defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex], we first need to express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].
### Step 1: Solve the equation for [tex]\( y \)[/tex]
We start with the given equation:
[tex]\[ x^2 + y^9 = 4 \][/tex]
To isolate [tex]\( y^9 \)[/tex], we subtract [tex]\( x^2 \)[/tex] from both sides:
[tex]\[ y^9 = 4 - x^2 \][/tex]
Next, we solve for [tex]\( y \)[/tex] by taking the ninth root of both sides. This yields:
[tex]\[ y = \sqrt[9]{4 - x^2} \][/tex]
### Step 2: Consider the nature of the solutions
The equation [tex]\( y^9 = 4 - x^2 \)[/tex] implies that there are potentially multiple ninth roots for a given input [tex]\( x \)[/tex].
### Step 3: List the possible solutions for [tex]\( y \)[/tex]
The ninth root of a number can have multiple complex solutions. Specifically, for [tex]\( y = \sqrt[9]{4 - x^2} \)[/tex], the roots are:
1. [tex]\( y = (4 - x^2)^{1/9} \)[/tex]
2. [tex]\( y = -(4 - x^2)^{1/9} \cdot \cos(\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(\pi/9) \)[/tex]
3. [tex]\( y = -(4 - x^2)^{1/9} \cdot \cos(\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(\pi/9) \)[/tex]
4. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(2\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(2\pi/9) \)[/tex]
5. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(2\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(2\pi/9) \)[/tex]
6. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(4\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(4\pi/9) \)[/tex]
7. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(4\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(4\pi/9) \)[/tex]
8. [tex]\( y = -(4 - x^2)^{1/9} / 2 - i\sqrt{3}(4 - x^2)^{1/9} / 2 \)[/tex]
9. [tex]\( y = -(4 - x^2)^{1/9} / 2 + i\sqrt{3}(4 - x^2)^{1/9} / 2 \)[/tex]
### Step 4: Determine if [tex]\( y \)[/tex] is uniquely determined for a given [tex]\( x \)[/tex]
For [tex]\( y \)[/tex] to be a function of [tex]\( x \)[/tex], each input [tex]\( x \)[/tex] must correspond to exactly one output [tex]\( y \)[/tex]. From the list above, it is clear there are multiple possible values for [tex]\( y \)[/tex] for a given [tex]\( x \)[/tex].
### Conclusion
Since there are multiple solutions for [tex]\( y \)[/tex] for each value of [tex]\( x \)[/tex], the equation [tex]\( x^2 + y^9 = 4 \)[/tex] does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
Correct Answer: The equation does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
### Step 1: Solve the equation for [tex]\( y \)[/tex]
We start with the given equation:
[tex]\[ x^2 + y^9 = 4 \][/tex]
To isolate [tex]\( y^9 \)[/tex], we subtract [tex]\( x^2 \)[/tex] from both sides:
[tex]\[ y^9 = 4 - x^2 \][/tex]
Next, we solve for [tex]\( y \)[/tex] by taking the ninth root of both sides. This yields:
[tex]\[ y = \sqrt[9]{4 - x^2} \][/tex]
### Step 2: Consider the nature of the solutions
The equation [tex]\( y^9 = 4 - x^2 \)[/tex] implies that there are potentially multiple ninth roots for a given input [tex]\( x \)[/tex].
### Step 3: List the possible solutions for [tex]\( y \)[/tex]
The ninth root of a number can have multiple complex solutions. Specifically, for [tex]\( y = \sqrt[9]{4 - x^2} \)[/tex], the roots are:
1. [tex]\( y = (4 - x^2)^{1/9} \)[/tex]
2. [tex]\( y = -(4 - x^2)^{1/9} \cdot \cos(\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(\pi/9) \)[/tex]
3. [tex]\( y = -(4 - x^2)^{1/9} \cdot \cos(\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(\pi/9) \)[/tex]
4. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(2\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(2\pi/9) \)[/tex]
5. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(2\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(2\pi/9) \)[/tex]
6. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(4\pi/9) - i(4 - x^2)^{1/9} \cdot \sin(4\pi/9) \)[/tex]
7. [tex]\( y = (4 - x^2)^{1/9} \cdot \cos(4\pi/9) + i(4 - x^2)^{1/9} \cdot \sin(4\pi/9) \)[/tex]
8. [tex]\( y = -(4 - x^2)^{1/9} / 2 - i\sqrt{3}(4 - x^2)^{1/9} / 2 \)[/tex]
9. [tex]\( y = -(4 - x^2)^{1/9} / 2 + i\sqrt{3}(4 - x^2)^{1/9} / 2 \)[/tex]
### Step 4: Determine if [tex]\( y \)[/tex] is uniquely determined for a given [tex]\( x \)[/tex]
For [tex]\( y \)[/tex] to be a function of [tex]\( x \)[/tex], each input [tex]\( x \)[/tex] must correspond to exactly one output [tex]\( y \)[/tex]. From the list above, it is clear there are multiple possible values for [tex]\( y \)[/tex] for a given [tex]\( x \)[/tex].
### Conclusion
Since there are multiple solutions for [tex]\( y \)[/tex] for each value of [tex]\( x \)[/tex], the equation [tex]\( x^2 + y^9 = 4 \)[/tex] does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
Correct Answer: The equation does not define [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.