Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine whether the equation [tex]\( xy + 7y = 9 \)[/tex] defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex], we'll analyze the relationship between [tex]\( y \)[/tex] and [tex]\( x \)[/tex] and check if for each value of [tex]\( x \)[/tex], there is exactly one value of [tex]\( y \)[/tex].
First, let's rewrite the equation:
[tex]\[ xy + 7y = 9 \][/tex]
Factor out [tex]\( y \)[/tex] on the left-hand side:
[tex]\[ y(x + 7) = 9 \][/tex]
Now, solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{9}{x + 7} \][/tex]
From this equation, it is clear that [tex]\( y \)[/tex] is expressed as a ratio involving [tex]\( x \)[/tex]. For any given value of [tex]\( x \)[/tex], there will be exactly one corresponding value of [tex]\( y \)[/tex] (except for the case when [tex]\( x + 7 = 0 \)[/tex], which would make the denominator zero and the equation undefined). However, this undefined point does not prevent [tex]\( y \)[/tex] from being a function of [tex]\( x \)[/tex] over its domain (which excludes [tex]\( x = -7 \)[/tex]).
Therefore, since for each [tex]\( x \)[/tex] there is a unique [tex]\( y \)[/tex] (apart from the singular point where [tex]\( x = -7 \)[/tex]), we can conclude that [tex]\( y \)[/tex] is defined as a function of [tex]\( x \)[/tex].
Yes, the equation [tex]\( xy + 7y = 9 \)[/tex] defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
First, let's rewrite the equation:
[tex]\[ xy + 7y = 9 \][/tex]
Factor out [tex]\( y \)[/tex] on the left-hand side:
[tex]\[ y(x + 7) = 9 \][/tex]
Now, solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{9}{x + 7} \][/tex]
From this equation, it is clear that [tex]\( y \)[/tex] is expressed as a ratio involving [tex]\( x \)[/tex]. For any given value of [tex]\( x \)[/tex], there will be exactly one corresponding value of [tex]\( y \)[/tex] (except for the case when [tex]\( x + 7 = 0 \)[/tex], which would make the denominator zero and the equation undefined). However, this undefined point does not prevent [tex]\( y \)[/tex] from being a function of [tex]\( x \)[/tex] over its domain (which excludes [tex]\( x = -7 \)[/tex]).
Therefore, since for each [tex]\( x \)[/tex] there is a unique [tex]\( y \)[/tex] (apart from the singular point where [tex]\( x = -7 \)[/tex]), we can conclude that [tex]\( y \)[/tex] is defined as a function of [tex]\( x \)[/tex].
Yes, the equation [tex]\( xy + 7y = 9 \)[/tex] defines [tex]\( y \)[/tex] as a function of [tex]\( x \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.