Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given statements is equivalent to [tex]\( P(z \geq 1.7) \)[/tex], let's break down the steps using properties of the standard normal distribution [tex]\( (z) \)[/tex].
1. Understanding the Normal Distribution:
The standard normal distribution is symmetric around its mean, which is 0, and has a standard deviation of 1.
2. Complement Rule in Probability:
In probability, we have the complement rule:
[tex]\[ P(A^c) = 1 - P(A) \][/tex]
where [tex]\( A^c \)[/tex] is the event "not A". Using this rule, we can express [tex]\( P(z \geq 1.7) \)[/tex] in terms of its complement:
[tex]\[ P(z \geq 1.7) = 1 - P(z < 1.7) \][/tex]
3. Relating [tex]\(\geq\)[/tex] to [tex]\(\leq\)[/tex] for Normal Distribution:
For the standard normal distribution, the probability that [tex]\( z \)[/tex] is less than a value is the same as the probability that it is less than or equal to that value:
[tex]\[ P(z \leq 1.7) = P(z < 1.7) \][/tex]
Thus,
[tex]\[ P(z \geq 1.7) = 1 - P(z \leq 1.7) \][/tex]
4. Symmetry Property of the Normal Distribution:
By the symmetry of the standard normal distribution:
[tex]\[ P(z \leq 1.7) = P(z \geq -1.7) \][/tex]
Thus,
[tex]\[ P(z \geq 1.7) = 1 - P(z \geq -1.7) \][/tex]
Now compare the given statements:
a. [tex]\( P(z \geq -1.7) \)[/tex]
b. [tex]\( 1 - P(z \geq -1.7) \)[/tex]
c. [tex]\( P(z \leq 1.7) \)[/tex]
d. [tex]\( 1 - P(z \geq 1.7) \)[/tex]
From our analysis, we found out that:
[tex]\[ P(z \geq 1.7) = 1 - P(z \geq -1.7) \][/tex]
So, the statement that is equivalent to [tex]\( P(z \geq 1.7) \)[/tex] is:
[tex]\[ 1 - P(z \geq -1.7) \][/tex]
Thus, the correct answer is [tex]\( 1 - P(z \geq -1.7) \)[/tex].
1. Understanding the Normal Distribution:
The standard normal distribution is symmetric around its mean, which is 0, and has a standard deviation of 1.
2. Complement Rule in Probability:
In probability, we have the complement rule:
[tex]\[ P(A^c) = 1 - P(A) \][/tex]
where [tex]\( A^c \)[/tex] is the event "not A". Using this rule, we can express [tex]\( P(z \geq 1.7) \)[/tex] in terms of its complement:
[tex]\[ P(z \geq 1.7) = 1 - P(z < 1.7) \][/tex]
3. Relating [tex]\(\geq\)[/tex] to [tex]\(\leq\)[/tex] for Normal Distribution:
For the standard normal distribution, the probability that [tex]\( z \)[/tex] is less than a value is the same as the probability that it is less than or equal to that value:
[tex]\[ P(z \leq 1.7) = P(z < 1.7) \][/tex]
Thus,
[tex]\[ P(z \geq 1.7) = 1 - P(z \leq 1.7) \][/tex]
4. Symmetry Property of the Normal Distribution:
By the symmetry of the standard normal distribution:
[tex]\[ P(z \leq 1.7) = P(z \geq -1.7) \][/tex]
Thus,
[tex]\[ P(z \geq 1.7) = 1 - P(z \geq -1.7) \][/tex]
Now compare the given statements:
a. [tex]\( P(z \geq -1.7) \)[/tex]
b. [tex]\( 1 - P(z \geq -1.7) \)[/tex]
c. [tex]\( P(z \leq 1.7) \)[/tex]
d. [tex]\( 1 - P(z \geq 1.7) \)[/tex]
From our analysis, we found out that:
[tex]\[ P(z \geq 1.7) = 1 - P(z \geq -1.7) \][/tex]
So, the statement that is equivalent to [tex]\( P(z \geq 1.7) \)[/tex] is:
[tex]\[ 1 - P(z \geq -1.7) \][/tex]
Thus, the correct answer is [tex]\( 1 - P(z \geq -1.7) \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.