Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the equation of a line that is parallel to the given line [tex]\(4x - y = -6\)[/tex] and passes through the point [tex]\((3, 9)\)[/tex], we can follow these steps:
### Step 1: Determine the slope of the given line
First, we will rewrite the equation of the given line [tex]\(4x - y = -6\)[/tex] in slope-intercept form [tex]\(y = mx + b\)[/tex]. This form makes it easier to identify the slope [tex]\(m\)[/tex].
Starting with the equation:
[tex]\[ 4x - y = -6 \][/tex]
Rearrange it to solve for [tex]\(y\)[/tex]:
[tex]\[ -y = -4x - 6 \][/tex]
[tex]\[ y = 4x + 6 \][/tex]
In the slope-intercept form [tex]\(y = mx + b\)[/tex], the coefficient of [tex]\(x\)[/tex] is the slope [tex]\(m\)[/tex]. Here, the slope [tex]\(m\)[/tex] is 4.
### Step 2: Use point-slope form to find the equation of the new line
We know that parallel lines have the same slope. Therefore, the line we are looking for has a slope of 4 and must pass through the point [tex]\((3, 9)\)[/tex].
We use the point-slope form of the equation of a line, which is:
[tex]\[ y - y_1 = m(x - x1) \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] is the point the line passes through and [tex]\(m\)[/tex] is the slope. Plugging in the known values:
[tex]\[ y - 9 = 4(x - 3) \][/tex]
### Step 3: Simplify to obtain the slope-intercept form of the equation
Now, we simplify the equation to get it into the slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y - 9 = 4(x - 3) \][/tex]
[tex]\[ y - 9 = 4x - 12 \][/tex]
[tex]\[ y = 4x - 12 + 9 \][/tex]
[tex]\[ y = 4x - 3 \][/tex]
### Final Equation
The equation of the line that is parallel to [tex]\(4x - y = -6\)[/tex] and passes through the point [tex]\((3, 9)\)[/tex] is:
[tex]\[ y = 4x - 3 \][/tex]
### Step 1: Determine the slope of the given line
First, we will rewrite the equation of the given line [tex]\(4x - y = -6\)[/tex] in slope-intercept form [tex]\(y = mx + b\)[/tex]. This form makes it easier to identify the slope [tex]\(m\)[/tex].
Starting with the equation:
[tex]\[ 4x - y = -6 \][/tex]
Rearrange it to solve for [tex]\(y\)[/tex]:
[tex]\[ -y = -4x - 6 \][/tex]
[tex]\[ y = 4x + 6 \][/tex]
In the slope-intercept form [tex]\(y = mx + b\)[/tex], the coefficient of [tex]\(x\)[/tex] is the slope [tex]\(m\)[/tex]. Here, the slope [tex]\(m\)[/tex] is 4.
### Step 2: Use point-slope form to find the equation of the new line
We know that parallel lines have the same slope. Therefore, the line we are looking for has a slope of 4 and must pass through the point [tex]\((3, 9)\)[/tex].
We use the point-slope form of the equation of a line, which is:
[tex]\[ y - y_1 = m(x - x1) \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] is the point the line passes through and [tex]\(m\)[/tex] is the slope. Plugging in the known values:
[tex]\[ y - 9 = 4(x - 3) \][/tex]
### Step 3: Simplify to obtain the slope-intercept form of the equation
Now, we simplify the equation to get it into the slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y - 9 = 4(x - 3) \][/tex]
[tex]\[ y - 9 = 4x - 12 \][/tex]
[tex]\[ y = 4x - 12 + 9 \][/tex]
[tex]\[ y = 4x - 3 \][/tex]
### Final Equation
The equation of the line that is parallel to [tex]\(4x - y = -6\)[/tex] and passes through the point [tex]\((3, 9)\)[/tex] is:
[tex]\[ y = 4x - 3 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.