Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the value of [tex]\(\cos 60^{\circ}\)[/tex], we can refer to the fundamental principles of trigonometry. The cosine function is part of the trigonometric functions and is extensively used in geometry, especially when dealing with right triangles and the unit circle.
In the context of the unit circle:
- The unit circle is a circle with a radius of 1 centered at the origin of a coordinate plane.
- The angle in trigonometry, like [tex]\(60^{\circ}\)[/tex], can be understood through this circle.
- The cosine of an angle is defined based on the x-coordinate of the point on the unit circle.
Now focusing on the specific angle:
- For [tex]\(60^{\circ}\)[/tex], it is a well-known standard angle commonly used in trigonometry.
- Cosine of standard angles including [tex]\(0^{\circ}\)[/tex], [tex]\(30^{\circ}\)[/tex], [tex]\(45^{\circ}\)[/tex], [tex]\(60^{\circ}\)[/tex], and [tex]\(90^{\circ}\)[/tex] are typically memorized because of their frequent application.
For the angle [tex]\(60^{\circ}\)[/tex]:
- The cosine of [tex]\(60^{\circ}\)[/tex] is equal to [tex]\(\frac{1}{2}\)[/tex].
Thus, the value of [tex]\(\cos 60^{\circ}\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
Therefore, the correct answer is:
B. [tex]\(\frac{1}{2}\)[/tex]
In the context of the unit circle:
- The unit circle is a circle with a radius of 1 centered at the origin of a coordinate plane.
- The angle in trigonometry, like [tex]\(60^{\circ}\)[/tex], can be understood through this circle.
- The cosine of an angle is defined based on the x-coordinate of the point on the unit circle.
Now focusing on the specific angle:
- For [tex]\(60^{\circ}\)[/tex], it is a well-known standard angle commonly used in trigonometry.
- Cosine of standard angles including [tex]\(0^{\circ}\)[/tex], [tex]\(30^{\circ}\)[/tex], [tex]\(45^{\circ}\)[/tex], [tex]\(60^{\circ}\)[/tex], and [tex]\(90^{\circ}\)[/tex] are typically memorized because of their frequent application.
For the angle [tex]\(60^{\circ}\)[/tex]:
- The cosine of [tex]\(60^{\circ}\)[/tex] is equal to [tex]\(\frac{1}{2}\)[/tex].
Thus, the value of [tex]\(\cos 60^{\circ}\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
Therefore, the correct answer is:
B. [tex]\(\frac{1}{2}\)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.